^ abBaggott M, Mendelson J (2001). "Does MDMA Cause Brain Damage?". In Holland J (ed.). Ecstasy: The Complete Guide: A Comprehensive Look at the Risks and Benefits of MDMA. Inner Traditions/Bear. pp. 110–145, 396–404. ISBN978-0-89281-857-0. Retrieved 24 November 2024. While a single injection of MDMA into the brain (intracerebroventricularly) had no effect on TPH activity, slow infusion of 1 mg/kg MDMA into the brain over 1 hr produced enough oxidative stress to acutely reduce TPH activity (Schmidt and Taylor 1988). The acute decrease in TPH activity is an early effect of MDMA and can be measured at post 15 min (Stone et al. 1989b). TPH inactivation can also be produced by non-neurotoxic MDMA doses (Schmidt and Taylor 1988; Stone et al. 1989a; Stone et al. 1989b). It therefore appears that MDMA rapidly induces oxidative stress but only produces neurotoxicity when endogenous free radical scavenging systems are overwhelmed.
^Grünblatt E, Mandel S, Youdim MB (April 2000). "MPTP and 6-hydroxydopamine-induced neurodegeneration as models for Parkinson's disease: neuroprotective strategies". J Neurol. 247 (Suppl 2): II95–102. doi:10.1007/pl00022909. PMID10991672.
^Parrott AC (April 2002). "Recreational Ecstasy/MDMA, the serotonin syndrome, and serotonergic neurotoxicity". Pharmacol Biochem Behav. 71 (4): 837–844. doi:10.1016/s0091-3057(01)00711-0. PMID11888574.
^Parrott AC (September 2013). "MDMA, serotonergic neurotoxicity, and the diverse functional deficits of recreational 'Ecstasy' users". Neurosci Biobehav Rev. 37 (8): 1466–1484. doi:10.1016/j.neubiorev.2013.04.016. PMID23660456.
^ abAguilar MA, García-Pardo MP, Parrott AC (January 2020). "Of mice and men on MDMA: A translational comparison of the neuropsychobiological effects of 3,4-methylenedioxymethamphetamine ('Ecstasy')". Brain Res. 1727: 146556. doi:10.1016/j.brainres.2019.146556. PMID31734398.
^ abcdItzhak Y, Achat-Mendes C (May 2004). "Methamphetamine and MDMA (ecstasy) neurotoxicity: 'of mice and men'". IUBMB Life. 56 (5): 249–255. doi:10.1080/15216540410001727699. PMID15370888.
^Johnson CB, Burroughs RL, Baggott MJ, Davidson CJ, Perrine SA, Baker LE (2022). 314.03 / RR6 - Locomotor stimulant effects and persistent serotonin depletions following [1-Benzofuran-5-yl)-N-methylpropan-2-amine (5-MAPB) treatment in Sprague-Dawley rats. Society for Neuroscience Conference, Nov. 14, 2022, San Diego, CA. 5-MAPB has been marketed as a less neurotoxic analogue of MDMA, but no studies have addressed whether 5-MAPB can cause the long lasting serotonergic changes seen with high or repeated MDMA dosing. [...] Neurochemical analyses indicated a statistically significant reduction in 5‑HT and 5-HIAA in all brain regions assessed 24 hours and two weeks after 6 mg/kg 5‑MAPB, with no statistically significant differences in monoamine levels between 1.2 mg/kg and saline-treated rats. There were also non-significant trends for reductions in striatal dopamine at both time intervals after 6 mg/kg 5-MAPB. These results show that 5-MAPB can dose-dependently produce persistent changes in 5-HT and 5-HIAA that appear analogous to those produced by MDMA.
^McCann UD, Seiden LS, Rubin LJ, Ricaurte GA (August 1997). "Brain serotonin neurotoxicity and primary pulmonary hypertension from fenfluramine and dexfenfluramine. A systematic review of the evidence". JAMA. 278 (8): 666–672. doi:10.1001/jama.1997.03550080076043. PMID9272900.
^ abJohnson MP, Nichols DE (May 1990). "Comparative serotonin neurotoxicity of the stereoisomers of fenfluramine and norfenfluramine". Pharmacol Biochem Behav. 36 (1): 105–109. doi:10.1016/0091-3057(90)90133-3. PMID2140899.
^Caccia S, Anelli M, Ferrarese A, Fracasso C, Garattini S (March 1993). "The role of d-norfenfluramine in the indole-depleting effect of d-fenfluramine in the rat". Eur J Pharmacol. 233 (1): 71–77. doi:10.1016/0014-2999(93)90350-q. PMID7682511.
^ abcdNobin A, Björklund A (June 1978). "Degenerative effects of various neurotoxic indoleamines on central monoamine neurons". Ann N Y Acad Sci. 305: 305–327. doi:10.1111/j.1749-6632.1978.tb31531.x. PMID360938.
^ abBjörklund A, Nobin A, Stenevi U (December 1973). "The use of neurotoxic dihydroxytryptamines as tools for morphological studies and localized lesioning of central indolamine neurons". Z Zellforsch Mikrosk Anat. 145 (4): 479–501. doi:10.1007/BF00306720. PMID4774982.
^ abcdePaterak J, Stefański R (2022). "5,6- and 5,7-Dihydroxytryptamines as Serotoninergic Neurotoxins". Handbook of Neurotoxicity. Cham: Springer International Publishing. pp. 691–717. doi:10.1007/978-3-031-15080-7_76. ISBN978-3-031-15079-1.
^ abMassotti M, Scotti de Carolis A, Longo VG (1974). "Effects of three dihydroxylated derivatives of tryptamine on the behavior and on brain amine content in mice". Pharmacol Biochem Behav. 2 (6): 769–776. doi:10.1016/0091-3057(74)90109-9. PMID4549398.
^Huang XM, Johnson MP, Nichols DE (July 1991). "Reduction in brain serotonin markers by alpha-ethyltryptamine (Monase)". Eur J Pharmacol. 200 (1): 187–190. doi:10.1016/0014-2999(91)90686-k. PMID1722753.
^Sainsbury PD, Kicman AT, Archer RP, King LA, Braithwaite RA (2011). "Aminoindanes--the next wave of 'legal highs'?". Drug Test Anal. 3 (7–8): 479–482. doi:10.1002/dta.318. PMID21748859.
^Johnson MP, Nichols DE (July 1991). "Combined administration of a non-neurotoxic 3,4-methylenedioxymethamphetamine analogue with amphetamine produces serotonin neurotoxicity in rats". Neuropharmacology. 30 (7): 819–822. doi:10.1016/0028-3908(91)90192-e. PMID1717873.
^Johnson MP, Conarty PF, Nichols DE (July 1991). "[3H]monoamine releasing and uptake inhibition properties of 3,4-methylenedioxymethamphetamine and p-chloroamphetamine analogues". Eur J Pharmacol. 200 (1): 9–16. doi:10.1016/0014-2999(91)90659-e. PMID1685125.
^Corkery JM, Elliott S, Schifano F, Corazza O, Ghodse AH (July 2013). "MDAI (5,6-methylenedioxy-2-aminoindane; 6,7-dihydro-5H-cyclopenta[f][1,3]benzodioxol-6-amine; 'sparkle'; 'mindy') toxicity: a brief overview and update". Hum Psychopharmacol. 28 (4): 345–355. doi:10.1002/hup.2298. PMID23881883.
^Johnson MP, Huang XM, Nichols DE (December 1991). "Serotonin neurotoxicity in rats after combined treatment with a dopaminergic agent followed by a nonneurotoxic 3,4-methylenedioxymethamphetamine (MDMA) analogue". Pharmacol Biochem Behav. 40 (4): 915–922. doi:10.1016/0091-3057(91)90106-c. PMID1726189.
^ abcdIgarashi K (1998). "The Possible Role of an Active Metafbollte Derived from the Neuroleptic Agent Haloperidol in Drug-Induced Parkinsonism". Journal of Toxicology: Toxin Reviews. 17 (1): 27–38. doi:10.3109/15569549809006488. ISSN0731-3837.
^ abcCastagnoli N, Castagnoli KP, Van der Schyf CJ, Usuki E, Igarashi K, Steyn SJ, et al. (1999). "Enzyme-catalyzed bioactivation of cyclic tertiary amines to form potential neurotoxins". Pol J Pharmacol. 51 (1): 31–38. PMID10389142.
^ abKostrzewa RM (2016). "Perinatal Lesioning and Lifelong Effects of the Noradrenergic Neurotoxin 6-Hydroxydopa". Curr Top Behav Neurosci. Current Topics in Behavioral Neurosciences. 29: 43–50. doi:10.1007/7854_2015_414. ISBN978-3-319-34134-7. PMID26660536.
^ abKostrzewa RM, Brus R (1998). "Destruction of catecholamine-containing neurons by 6-hydroxydopa, an endogenous amine oxidase cofactor". Amino Acids. 14 (1–3): 175–179. doi:10.1007/BF01345259. PMID9871458.
^ abcVarešlija D, Tipton KF, Davey GP, McDonald AG (February 2020). "6-Hydroxydopamine: a far from simple neurotoxin". J Neural Transm (Vienna). 127 (2): 213–230. doi:10.1007/s00702-019-02133-6. PMID31894418.
^Villa M, Muñoz P, Ahumada-Castro U, Paris I, Jiménez A, Martínez I, et al. (July 2013). "One-electron reduction of 6-hydroxydopamine quinone is essential in 6-hydroxydopamine neurotoxicity". Neurotox Res. 24 (1): 94–101. doi:10.1007/s12640-013-9382-7. PMID23385626.
^Badillo-Ramírez I, Saniger JM, Rivas-Arancibia S (October 2019). "5-S-cysteinyl-dopamine, a neurotoxic endogenous metabolite of dopamine: Implications for Parkinson's disease". Neurochem Int. 129: 104514. doi:10.1016/j.neuint.2019.104514. PMID31369776.
^ abMiyazaki I, Asanuma M (April 2009). "Approaches to prevent dopamine quinone-induced neurotoxicity". Neurochem Res. 34 (4): 698–706. doi:10.1007/s11064-008-9843-1. PMID18770028.
^ abAsanuma M, Miyazaki I, Ogawa N (2003). "Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson's disease". Neurotox Res. 5 (3): 165–176. doi:10.1007/BF03033137. PMID12835121.
^ abcBaumgarten HG, Klemm HP, Lachenmayer L, Björklund A, Lovenberg W, Schlossberger HG (June 1978). "Mode and mechanism of action of neurotoxic indoleamines: a review and a progress report". Ann N Y Acad Sci. 305 (1): 3–24. Bibcode:1978NYASA.305....3B. doi:10.1111/j.1749-6632.1978.tb31507.x. PMID360937.
^Maret G, Testa B, Jenner P, el Tayar N, Carrupt PA (1990). "The MPTP story: MAO activates tetrahydropyridine derivatives to toxins causing parkinsonism". Drug Metab Rev. 22 (4): 291–332. doi:10.3109/03602539009041087. PMID2253555.
^Manaye KF, Sonsalla PK, Barnett G, Heikkila RE, Woodward DJ, Smith WK, et al. (July 1989). "1-Methyl-4-(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'CH3-MPTP)-induced degeneration of mesostriatal dopaminergic neurons in the mouse: biochemical and neuroanatomical studies". Brain Res. 491 (2): 307–315. doi:10.1016/0006-8993(89)90065-6. PMID2765888.
^Heikkila RE, Sieber BA, Manzino L, Sonsalla PK (June 1989). "Some features of the nigrostriatal dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse". Mol Chem Neuropathol. 10 (3): 171–183. doi:10.1007/BF03159727. PMID2669769.
^Youngster SK, Duvoisin RC, Hess A, Sonsalla PK, Kindt MV, Heikkila RE (March 1986). "1-Methyl-4-(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'-CH3-MPTP) is a more potent dopaminergic neurotoxin than MPTP in mice". Eur J Pharmacol. 122 (2): 283–287. doi:10.1016/0014-2999(86)90115-9. PMID3486770.
^Rose S, Nomoto M, Jackson EA, Gibb WR, Jenner P, Marsden CD (May 1990). "1-Methyl-4-(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'-methyl-MPTP) is less neurotoxic than MPTP in the common marmoset". Eur J Pharmacol. 181 (1–2): 97–103. doi:10.1016/0014-2999(90)90249-6. PMID2117541.
^ abPrzedborski S, Vila M (2001). "MPTP: a review of its mechanisms of neurotoxicity". Clinical Neuroscience Research. 1 (6): 407–418. doi:10.1016/S1566-2772(01)00019-6.
^Dinis-Oliveira RJ, Remião F, Carmo H, Duarte JA, Navarro AS, Bastos ML, et al. (December 2006). "Paraquat exposure as an etiological factor of Parkinson's disease". Neurotoxicology. 27 (6): 1110–1122. Bibcode:2006NeuTx..27.1110D. doi:10.1016/j.neuro.2006.05.012. PMID16815551. Ironically, in the 1960s, MPP+ itself had been tested as an herbicide under the commercial name of cyperquat (Di Monte, 2001).
^Marchitti SA, Deitrich RA, Vasiliou V (June 2007). "Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase". Pharmacol Rev. 59 (2): 125–150. doi:10.1124/pr.59.2.1. PMID17379813.
^Ross SB, Stenfors C (January 2015). "DSP4, a selective neurotoxin for the locus coeruleus noradrenergic system. A review of its mode of action". Neurotox Res. 27 (1): 15–30. doi:10.1007/s12640-014-9482-z. PMID24964753.
^Jaim-Etcheverry G, Zieher LM (April 1980). "DSP-4: a novel compound with neurotoxic effects on noradrenergic neurons of adult and developing rats". Brain Res. 188 (2): 513–523. doi:10.1016/0006-8993(80)90049-9. PMID7370771.
^Górska A, Marszałł M, Sloderbach A (October 2015). "Neurotoksyczność pirydyniowych metabolitów haloperydolu" [The neurotoxicity of pyridinium metabolites of haloperidol]. Postepy Hig Med Dosw (Online) (in Polish). 69: 1169–1175. doi:10.5604/17322693.1175009 (inactive 1 November 2024). PMID26561842.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
^Avent KM, Usuki E, Eyles DW, Keeve R, Van der Schyf CJ, Castagnoli N, et al. (1996). "Haloperidol and its tetrahydropyridine derivative (HPTP) are metabolized to potentially neurotoxic pyridinium species in the baboon". Life Sci. 59 (17): 1473–1482. doi:10.1016/0024-3205(96)00475-4. PMID8890926.
^Avent KM, Riker RR, Fraser GL, Van der Schyf CJ, Usuki E, Pond SM (1997). "Metabolism of haloperidol to pyridinium species in patients receiving high doses intravenously: is HPTP an intermediate?". Life Sci. 61 (24): 2383–2390. doi:10.1016/s0024-3205(97)00955-7. PMID9399630.
^Ooms F, Delvosal S, Wouters J, Durant F, Dockendolf G, Van't Land C, et al. (2000). "Empirical and molecular modeling study of the pyridinium species RHPP+, an abundant and potentially neurotoxic metabolite of haloperidol". Journal of the Chemical Society, Perkin Transactions 2 (9): 1781–1787. doi:10.1039/b002357o.
^Avent KM, DeVoss JJ, Gillam EM (July 2006). "Cytochrome P450-mediated metabolism of haloperidol and reduced haloperidol to pyridinium metabolites". Chem Res Toxicol. 19 (7): 914–920. doi:10.1021/tx0600090. PMID16841959.