A monomer (/ˈmɒnəmər/ MON-ə-mər; mono-, "one" + -mer, "part") is a molecule that can react together with other monomer molecules to form a larger polymer chain or three-dimensional network in a process called polymerization.[1][2][3]
Monomer molecule: A molecule which can undergo polymerization, thereby contributing constitutional units to the essential structure of a macromolecule.[4]
Chemistry classifies monomers by type, and two broad classes based on the type of polymer they form.
By type:
By type of polymer they form:
Differing stoichiometry[5] causes each class to create its respective form of polymer.
The polymerization of one kind of monomer gives a homopolymer. Many polymers are copolymers, meaning that they are derived from two different monomers. In the case of condensation polymerizations, the ratio of comonomers is usually 1:1. For example, the formation of many nylons requires equal amounts of a dicarboxylic acid and diamine. In the case of addition polymerizations, the comonomer content is often only a few percent. For example, small amounts of 1-octene monomer are copolymerized with ethylene to give specialized polyethylene.
The term "monomeric protein" may also be used to describe one of the proteins making up a multiprotein complex.[6]
Some of the main biopolymers are listed below:
For proteins, the monomers are amino acids. Polymerization occurs at ribosomes. Usually about 20 types of amino acid monomers are used to produce proteins. Hence proteins are not homopolymers.
For polynucleic acids (DNA/RNA), the monomers are nucleotides, each of which is made of a pentose sugar, a nitrogenous base and a phosphate group. Nucleotide monomers are found in the cell nucleus. Four types of nucleotide monomers are precursors to DNA and four different nucleotide monomers are precursors to RNA.
For carbohydrates, the monomers are monosaccharides. The most abundant natural monomer is glucose, which is linked by glycosidic bonds into the polymers cellulose, starch, and glycogen.[7]
Isoprene is a natural monomer that polymerizes to form a natural rubber, most often cis-1,4-polyisoprene, but also trans-1,4-polymer. Synthetic rubbers are often based on butadiene, which is structurally related to isoprene.