From Wikipedia - Reading time: 2 min
In the theory of Probably Approximately Correct Machine Learning, the Natarajan dimension characterizes the complexity of learning a set of functions, generalizing from the Vapnik-Chervonenkis dimension for boolean functions to multi-class functions. Originally introduced as the Generalized Dimension by Natarajan,[1] it was subsequently renamed the Natarajan Dimension by Haussler and Long.[2]
Let be a set of functions from a set to a set . shatters a set if there exist two functions such that
for all and for all .
The Natarajan dimension of H is the maximal cardinality of a set shattered by .
It is easy to see that if , the Natarajan dimension collapses to the Vapnik Chervonenkis dimension.
Shalev-Shwartz and Ben-David [3] present comprehensive material on multi-class learning and the Natarajan dimension, including uniform convergence and learnability.