An academic discipline – one with academic departments, curricula and degrees; national and international societies; and specialized journals.
A scientific field (a branch of science) – widely recognized category of specialized expertise within science, and typically embodies its own terminology and nomenclature. Such a field will usually be represented by one or more scientific journals, where peer-reviewed research is published.
Astronomy – studies the universe beyond Earth, including its formation and development, and the evolution, physics, chemistry, meteorology, and motion of celestial objects (such as galaxies, planets, etc.) and phenomena that originate outside the atmosphere of Earth (such as the cosmic background radiation).
Galactic astronomy – the study of our own Milky Way galaxy and all its contents.
Physical cosmology – the study of the largest-scale structures and dynamics of the universe and is concerned with fundamental questions about its formation and evolution.
Planetary science – the scientific study of planets (including Earth), moons, and planetary systems, in particular those of the Solar System and the processes that form them.
Stellar astronomy – natural science that deals with the study of celestial objects (such as stars, planets, comets, nebulae, star clusters, and galaxies) and phenomena that originate outside the atmosphere of Earth (such as cosmic background radiation)
Atmospheric physics – the study of the application of physics to the atmosphere
Optics – the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it.
Biophysics – interdisciplinary science that uses the methods of physics to study biological systems
Neurophysics – branch of biophysics dealing with the nervous system.
Polymer physics – field of physics that studies polymers, their fluctuations, mechanical properties, as well as the kinetics of reactions involving degradation and polymerization of polymers and monomers respectively.
Mathematical physics – application of mathematics to problems in physics and the development of mathematical methods for such applications and the formulation of physical theories.
Mechanics – the branch of physics concerned with the behavior of physical bodies when subjected to forces or displacements, and the subsequent effects of the bodies on their environment.
Biomechanics – the study of the structure and function of biological systems such as humans, animals, plants, organs, and cells using the methods of mechanics.
Classical mechanics – one of the two major sub-fields of mechanics, which is concerned with the set of physical laws describing the motion of bodies under the action of a system of forces.
Kinematics – branch of classical mechanics that describes the motion of points, bodies (objects) and systems of bodies (groups of objects) without consideration of the causes of motion.[6][7][8]
Homeokinetics – the physics of complex, self-organizing systems
Continuum mechanics – the branch of mechanics that deals with the analysis of the kinematics and the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles.
Dynamics – the study of the causes of motion and changes in motion
Fluid mechanics – the study of fluids and the forces on them.
Fluid dynamics – study of the effect of forces on fluid motion
Statics – the branch of mechanics concerned with the analysis of loads (force, torque/moment) on physical systems in static equilibrium, that is, in a state where the relative positions of subsystems do not vary over time, or where components and structures are at a constant velocity.
Statistical mechanics – the branch of physics which studies any physical system that has a large number of degrees of freedom.
Thermodynamics – the branch of physical science concerned with heat and its relation to other forms of energy and work.
Nuclear physics – field of physics that studies the building blocks and interactions of atomic nuclei.
Particle physics – the branch of physics that studies the properties and interactions of the fundamental constituents of matter and energy.
Psychophysics – quantitatively investigates the relationship between physical stimuli and the sensations and perceptions they affect.
Plasma physics – the study of plasma, a state of matter similar to gas in which a certain portion of the particles are ionized.
Quantum physics – branch of physics dealing with physical phenomena where the action is on the order of the Planck constant.
Quantum field theory – the application of quantum theory to the study of fields (systems with infinite degrees of freedom).
Quantum information theory – the study of the information-processing capabilities afforded by quantum mechanics.
Quantum foundations – the discipline focusing in understanding the counterintuitive aspects of the theory, including trying to find physical principles underlying them, and proposing generalisations of quantum theory.
Quantum gravity – the search for an account of gravitation fully compatible with quantum theory.
Relativity – theory of physics which describes the relationship between space and time.
Soil physics – the study of soil physical properties and processes.
Cryogenics – cryogenics is the study of the production of very low temperature (below −150 °C, −238 °F or 123 K) and the behavior of materials at those temperatures.
Econophysics – interdisciplinary research field, applying theories and methods originally developed by physicists to solve problems in economics
Materials physics – use of physics to describe materials in many different ways such as force, heat, light, and mechanics.
Vehicle dynamics – dynamics of vehicles, here assumed to be ground vehicles.
Philosophy of physics – deals with conceptual and interpretational issues in modern physics, many of which overlap with research done by certain kinds of theoretical physicists.
History of physics – history of the physical science that studies matter and its motion through space-time, and related concepts such as energy and force
History of acoustics – history of the study of mechanical waves in solids, liquids, and gases (such as vibration and sound)
History of astronomy – history of the studies the universe beyond Earth, including its formation and development, and the evolution, physics, chemistry, meteorology, and motion of celestial objects (such as galaxies, planets, etc.) and phenomena that originate outside the atmosphere of Earth (such as the cosmic background radiation).
History of astrodynamics – history of the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft.
History of astrometry – history of the branch of astronomy that involves precise measurements of the positions and movements of stars and other celestial bodies.
History of cosmology – history of the discipline that deals with the nature of the Universe as a whole.
History of physical cosmology – history of the study of the largest-scale structures and dynamics of the universe and is concerned with fundamental questions about its formation and evolution.
History of planetary science – history of the scientific study of planets (including Earth), moons, and planetary systems, in particular those of the Solar System and the processes that form them.
History of stellar astronomy – history of the natural science that deals with the study of celestial objects (such as stars, planets, comets, nebulae, star clusters and galaxies) and phenomena that originate outside the atmosphere of Earth (such as cosmic background radiation)
History of econophysics – history of the interdisciplinary research field, applying theories and methods originally developed by physicists in order to solve problems in economics
History of electromagnetism – history of the branch of science concerned with the forces that occur between electrically charged particles.
History of geophysics – history of the physics of the Earth and its environment in space; also the study of the Earth using quantitative physical methods
History of mechanics – history of the branch of physics concerned with the behavior of physical bodies when subjected to forces or displacements, and the subsequent effects of the bodies on their environment.
History of biomechanics – history of the study of the structure and function of biological systems such as humans, animals, plants, organs, and cells by means of the methods of mechanics.
History of classical mechanics – history of the one of the two major sub-fields of mechanics, which is concerned with the set of physical laws describing the motion of bodies under the action of a system of forces.
History of quantum mechanics – history of the branch of physics dealing with physical phenomena where the action is on the order of the Planck constant.
History of optics – history of the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it.
History of spectroscopy – measuring the response of materials to energy dependent probes of light and matter.
History of subatomic physics – history of the branch of physics that studies the existence and interactions of particles that are the constituents of what is usually referred to as matter or radiation.
History of psychophysics – history of the quantitative investigations of the relationship between physical stimuli and the sensations and perceptions they affect.
History of special relativity – history of the study of the relationship between space and time in the absence of gravity
History of solid-state physics – history of the study of rigid matter, or solids, through methods such as quantum mechanics, crystallography, electromagnetism, and metallurgy.
Physics – branch of science that studies matter[9] and its motion through space and time, along with related concepts such as energy and force.[10] Physics is one of the "fundamental sciences" because the other natural sciences (like biology, geology etc.) deal with systems that seem to obey the laws of physics. According to physics, the physical laws of matter, energy and the fundamental forces of nature govern the interactions between particles and physical entities (such as planets, molecules, atoms or the subatomic particles). Some of the basic pursuits of physics, which include some of the most prominent developments in modern science in the last millennium, include:
Describing the nature, measuring and quantifying of bodies and their motion, dynamics etc.
^Richard Feynman begins his Lectures with the atomic hypothesis, as his most compact statement of all scientific knowledge: "If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generations ..., what statement would contain the most information in the fewest words? I believe it is ... that all things are made up of atoms – little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another. ..."
R. P. Feynman; R. B. Leighton; M. Sands (1963). The Feynman Lectures on Physics. Vol. 1. p. I-2. ISBN978-0-201-02116-5.
^J. C. Maxwell (1878). Matter and Motion. D. Van Nostrand. p. 9. ISBN978-0-486-66895-6. Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events.
^
H.D. Young; R.A. Freedman (2004). University Physics with Modern Physics (11th ed.). Addison Wesley. p. 2. Physics is an experimental science. Physicists observe the phenomena of nature and try to find patterns and principles that relate these phenomena. These patterns are called physical theories or, when they are very well established and of broad use, physical laws or principles.
^Note: The term 'universe' is defined as everything that physically exists: the entirety of space and time, all forms of matter, energy and momentum, and the physical laws and constants that govern them. However, the term 'universe' may also be used in slightly different contextual senses, denoting concepts such as the cosmos or the philosophical world.
^At the start of The Feynman Lectures on Physics, Richard Feynman offers the atomic hypothesis as the single most prolific scientific concept: "If, in some cataclysm, all [] scientific knowledge were to be destroyed [save] one sentence [...] what statement would contain the most information in the fewest words? I believe it is [...] that all things are made up of atoms – little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another ..." (Feynman, Leighton & Sands 1963, p. I-2)
^"Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." (Maxwell 1878, p. 9)