The parallel operator represents the reciprocal value of a sum of reciprocal values (sometimes also referred to as the "reciprocal formula" or "harmonic sum") and is defined by:[9][6][10][11]
The operator was originally introduced as reduced sum by Sundaram Seshu in 1956,[20][21][14] studied as operator ∗ by Kent E. Erickson in 1959,[22][23][14] and popularized by Richard James Duffin and William Niles Anderson, Jr. as parallel addition or parallel sum operator : in mathematics and network theory since 1966.[15][16][1] While some authors continue to use this symbol up to the present,[7][8] for example, Sujit Kumar Mitra used ∙ as a symbol in 1970.[14] In applied electronics, a ∥ sign became more common as the operator's symbol around 1974.[24][25][26][27][28][nb 1][nb 2] This was often written as doubled vertical line (||) available in most character sets (sometimes italicized as //[29][30]), but now can be represented using Unicode character U+2225 ( ∥ ) for "parallel to". In LaTeX and related markup languages, the macros \| and \parallel are often used (and rarely \smallparallel is used) to denote the operator's symbol.
Using the distributive property twice, the product of two parallel binomials can be expanded as
The square of a binomial is
The cube of a binomial is
In general, the nth power of a binomial can be expanded using binomial coefficients which are the reciprocal of those under addition, resulting in an analog of the binomial formula:
The extended complex numbersincluding zero, is no longer a field under parallel and multiplication, because 0 has no inverse under parallel. (This is analogous to the way is not a field because has no additive inverse.)
For every non-zero a,
The quantity can either be left undefined (see indeterminate form) or defined to equal 0.
In the absence of parentheses, the parallel operator is defined as taking precedence over addition or subtraction, similar to multiplication.[1][31][9][10]
The time between conjunctions of two orbiting bodies is called the synodic period. If the period of the slower body is T2, and the period of the faster is T1, then the synodic period is
A construction worker raises a wall in 5 hours. Another worker would need 7 hours for the same work. How long does it take to build the wall if both workers work in parallel?
Suggested already by Kent E. Erickson as a subroutine in digital computers in 1959,[22] the parallel operator is implemented as a keyboard operator on the Reverse Polish Notation (RPN) scientific calculators WP 34S since 2008[32][33][34] as well as on the WP 34C[35] and WP 43S since 2015,[36][37] allowing to solve even cascaded problems with few keystrokes like 270↵ Enter180∥120∥.
Given a fieldF there are two embeddings of F into the projective line P(F): z → [z : 1] and z → [1 : z]. These embeddings overlap except for [0:1] and [1:0]. The parallel operator relates the addition operation between the embeddings. In fact, the homographies on the projective line are represented by 2 x 2 matrices M(2,F), and the field operations (+ and ×) are extended to homographies. Each embedding has its addition a + b represented by the following matrix multiplications in M(2,A):
The two matrix products show that there are two subgroups of M(2,F) isomorphic to (F,+), the additive group of F. Depending on which embedding is used, one operation is +, the other is
^ abWhile the use of the symbol ∥ for "parallel" in geometry reaches as far back as 1673 in John Kersey the elder's work,[A] this came into more use only since about 1875.[B] The usage of a mathematical operator for parallel circuits originates from network theory in electrical engineering. Sundaram Seshu introduced a reduced sum operator in 1956,[C] Kent E. Erickson proposed an asterisk (∗) to symbolize the operator in 1959,[D] whilst Richard James Duffin and William Niles Anderson, Jr. used a colon (:) for the parallel addition since 1966.[E] Sujit Kumar Mitra used a middot (∙) for it in 1970.[F] The first usage of the parallel symbol (∥) for this operator in applied electronics is unknown, but might have originated from Stephen D. Senturia [d] and Bruce D. Wedlock's 1974 book "Electronic Circuits and Applications",[G] which evolved from their introductory electronics course at Massachusetts Institute of Technology (MIT) with concepts of teaching network theory and electronics derived from an earlier course taught by Campbell "Cam" Leach Searle. It was further popularized through John W. McWane's 1981 book "Introduction to Electronics and Instrumentation",[H] which grew out of an identically-named MIT course developed as part of the influential Technical Curriculum Development Project between 1974 and 1979. This symbol was probably also introduced because the other used symbols could be easily confused with signs commonly used for multiplication and division in some contexts.
^ abcIn electrical circuits the parallel operator can be applied to, respectively, parallel resistances (R in [Ω]) or inductances (L in [H]) as well as to impedances (Z in [Ω]) or reactances (X in [Ω]). Ignoring the operator symbol's then-misleading glyph it can also be applied to series circuits of, respectively, conductances (G in [S]) or capacitances (C in [F]) as well as to admittances (Y in [S]) or susceptances (B in [S]).
^ abcdDuffin, Richard James (1971) [1970, 1969]. "Network Models". Written at Durham, North Carolina, USA. In Wilf, Herbert Saul; Hararay, Frank (eds.). Mathematical Aspects of Electrical Network Analysis. Proceedings of a Symposium in Applied Mathematics of the American Mathematical Society and the Society for Industrial and Applied Mathematics held in New York City, 1969-04-02/03. Vol. III of SIAM-AMS Proceedings (illustrated ed.). Providence, Rhode Island: American Mathematical Society (AMS) / Society for Industrial and Applied Mathematics (SIAM). pp. 65–92 [68]. ISBN0-8218-1322-6. ISSN0080-5084. LCCN79-167683. ISBN978-0-8218-1322-5. Report 69-21. Retrieved 2019-08-05. pp. 68–69: […] To have a convenient short notation for the joint resistance of resistors connected in parallel let […] A:B = AB/(A+B) […] A:B may be regarded as a new operation termed parallel addition […] Parallel addition is defined for any nonnegative numbers. The network model shows that parallel addition is commutative and associative. Moreover, multiplication is distributive over this operation. Consider now an algebraic expression in the operations (+) and (:) operating on positive numbers A, B, C, etc. […] To give a network interpretation of such a polynomial read A + B as "A series B" and A : B as "A parallel B" then it is clear that the expression […] is the joint resistance of the network […][1][2] (206 pages)
^Kersey (the elder), John (1673). "Chapter I: Concerning the Scope of this fourth Book and the Signification of Characters, Abbreviations and Citations used therein". The Elements of that Mathematical Art, commonly called Algebra. Vol. Book IV - The Elements of the Algebraical Arts. London: Thomas Passinger, Three-Bibles, London-Bridge. pp. 177–178. Archived from the original on 2020-08-05. Retrieved 2019-08-09.
^Cajori, Florian (1993) [September 1928]. "§ 184, § 359, § 368". A History of Mathematical Notations – Notations in Elementary Mathematics. Vol. 1 (two volumes in one unaltered reprint ed.). Chicago, US: Open court publishing company. pp. 193, 402–403, 411–412. ISBN0-486-67766-4. LCCN93-29211. Retrieved 2019-07-22. pp. 402–403, 411–412: §359. […] ∥ for parallel occurs in Oughtred's Opuscula mathematica hactenus inedita (1677) [p. 197], a posthumous work (§ 184) […] §368. Signs for parallel lines. […] when Recorde's sign of equality won its way upon the Continent, vertical lines came to be used for parallelism. We find ∥ for "parallel" in Kersey,[A]Caswell, Jones,[B] Wilson,[C]Emerson,[D] Kambly,[E] and the writers of the last fifty years who have been already quoted in connection with other pictographs. Before about 1875 it does not occur as often […] Hall and Stevens[F] use "par[F] or ∥" for parallel […] [A] John Kersey, Algebra (London, 1673), Book IV, p. 177. [B] W. Jones, Synopsis palmarioum matheseos (London, 1706). [C] John Wilson, Trigonometry (Edinburgh, 1714), characters explained. [D] W. Emerson, Elements of Geometry (London, 1763), p. 4. [E] L. Kambly [de], Die Elementar-Mathematik, Part 2: Planimetrie, 43. edition (Breslau, 1876), p. 8. […] [F] H. S. Hall and F. H. Stevens, Euclid's Elements, Parts I and II (London, 1889), p. 10. […][3]
^ abRanade, Gireeja; Stojanovic, Vladimir, eds. (Fall 2018). "Chapter 15.7.2 Parallel Resistors"(PDF). EECS 16A Designing Information Devices and Systems I(PDF) (lecture notes). University of California, Berkeley. p. 12. Note 15. Archived(PDF) from the original on 2018-12-27. Retrieved 2018-12-28. p. 12: […] This mathematical relationship comes up often enough that it actually has a name: the "parallel operator", denoted ∥. When we say x∥y, it means . Note that this is a mathematical operator and does not say anything about the actual configuration. In the case of resistors the parallel operator is used for parallel resistors, but for other components (like capacitors) this is not the case. […] (16 pages)
^ abCotter, Neil E., ed. (2015-10-12) [2014-09-20]. "ECE1250 Cookbook – Nodes, Series, Parallel" (lecture notes). Cookbooks. University of Utah. Archived(PDF) from the original on 2020-08-20. Retrieved 2019-08-11. […] One convenient way to indicate two resistors are in parallel is to put a ∥ between them. […]
^Böcker, Joachim (2019-03-18) [April 2008]. "Grundlagen der Elektrotechnik Teil B"(PDF) (in German). Universität Paderborn. p. 12. Archived(PDF) from the original on 2018-04-17. Retrieved 2019-08-09. p. 12: Für die Berechnung des Ersatzwiderstands der Parallelschaltung wird […] gern die Kurzschreibweise ∥ benutzt.
^Senturia, Stephen D.[at Wikidata]; Wedlock, Bruce D. (1975) [August 1974]. "Part A. Learning the Language, Chapter 3. Linear Resistive Networks, 3.2 Basic Network Configurations, 3.2.3. Resistors in Parallel". Written at Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. Electronic Circuits and Applications (1 ed.). New York, London, Sydney, Toronto: John Wiley & Sons, Inc. pp. viii–ix, 44–46 [45]. ISBN0-471-77630-0. LCCN74-7404. S2CID61070327. pp. viii, ix, 45: This textbook evolved from a one-semester introductory electronics course taught by the authors at the Massachusetts Institute of Technology. […] The course is used by many freshmen as a precursor to the MIT Electrical Engineering Core Program. […] The preparation of a book of this size has drawn on the contribution of many people. The concept of teaching network theory and electronics as a single unified subject derives from Professor Campbell Searle, who taught the introductory electronics course when one of us (S.D.S.) was a first-year physics graduate student trying to learn electronics. In addition, Professor Searle has provided invaluable constructive criticism throughout the writing of this text. Several members of the MIT faculty and nearly 40 graduate technical assistants have participated in the teaching of this material over the past five years, many of whom have made important contributions through their suggestions and examples. Among these, we especially wish to thank O. R. Mitchell, Irvin Englander, George Lewis, Ernest Vincent, David James, Kenway Wong, Gim Hom, Tom Davis, James Kirtley, and Robert Donaghey. The chairman of the MIT Department of Electrical Engineering, Professor Louis D. Smullin, has provided support and encouragement during this project, as have many colleagues throughout the department. […] The first result […] states that the total voltage across the parallel combination of R1 and R2 is the same as that which occurs across a single resistance of value R1 R2 (R1 + R2). Because this expression for parallel resistance occurs so often, it is given a special notation (R1∥R2). That is, when R1 and R2 are in parallel, the equivalent resistance is […] (xii+623+5 pages) (NB. A teacher's manual was available as well. Early print runs contains a considerable number of typographical errors. See also: Wedlock's 1978 book.) [7]
^Wolf, Lawrence J. (1977) [1976, 1974]. "Section 4. Instructional Materials – 4.3. The MIT Technical Curriculum Development Project – Introduction to Electronics and Instrumentation". In Aldridge, Bill G.; Mowery, Donald R.; Wolf, Lawrence J.; Dixon, Peggy (eds.). Science and Engineering Technology – Curriculum Guide: A Guide to a Two-Year Associate Degree Curriculum(PDF). Saint Louis Community College–Florissant Valley, St. Louis, Missouri, USA: National Science Teachers Association, Washington DC, USA. pp. 21, 77. Archived(PDF) from the original on 2017-02-15. Retrieved 2019-08-08. p. 21: […] Introduction to Electronics and Instrumentation is a new and contemporary approach to the introductory electronics course. Designed for students with no prior experience with electronics, it develops the skills and knowledge necessary to use and understand modern electronic systems. […] John W. McWane […] (NB. The SET Project was a two-year post-secondary curriculum developed between 1974 and 1977 preparing technicians to use electronic instruments.)
^Wiesner, Jerome Bert; Johnson, Howard Wesley; Killian, Jr., James Rhyne, eds. (1978-04-11). "School of Engineering – Center for Advanced Engineering Study (C.A.E.S.) – Research and Development – Technical Curriculum Research and Development Project". Report of the President and the Chancellor 1977–78 – Massachusetts Institute of Technology(PDF). Massachusetts Institute of Technology (MIT). pp. 249, 252–253. Archived(PDF) from the original on 2015-09-10. Retrieved 2019-08-08. pp. 249, 252–253: […] The Technical Curriculum Research and Development Program, sponsored by the Imperial Organization of Social Services [fa] of Iran, is entering the fourth year of a five-year contract. Curriculum development in electronics and mechanical engineering continues. […] Administered jointly by C.A.E.S. and the Department of Materials Science and Engineering, the Project is under the supervision of Professor Merton C. Flemings. It is directed by Dr. John W. McWane. […] Curriculum Materials Development. This is the principal activity of the project and is concerned with the development of innovative, state-of-the-art course materials in needed areas of engineering technology […] new introductory course in electronics […] is entitled Introduction to Electronics and Instrumentation and consists of eight […] modules […] dc Current, Voltage, and Resistance; Basic Circuit Networks; Time Varying Signals; Operational Amplifiers; Power Supplies; ac Current, Voltage, and Impedance; Digital Circuits; and Electronic Measurement and Control. This course represents a major change and updating of the way in which electronics is introduced, and should be of great value to STI as well as to many US programs. […]
^Wedlock, Bruce D. (1978). Basic circuit networks. Introduction to electronics and instrumentation. Massachusetts Institute of Technology (MIT), Technical Curriculum Research and Development Project. (81 pages) (NB. This formed the basis for Part I of McWane's 1981 book. See also: Senturia's and Wedlock's 1975 book.)
^Dale, Paul; Bonin, Walter (2012-11-30) [2008-12-09]. WP 34S Owner's Manual(PDF) (3.1 ed.). pp. 1, 14, 32, 66, 116. Archived(PDF) from the original on 2019-07-09. Retrieved 2019-07-13. [8] (211 pages)