The Polyporales are an order of about 1,800 species of fungi in the divisionBasidiomycota. The order includes some (but not all) polypores as well as many corticioid fungi and a few agarics (mainly in the genusLentinus). Many species within the order are saprotrophic, most of them wood-rotters. Some genera, such as Ganoderma and Fomes, contain species that attack living tissues and then continue to degrade the wood of their dead hosts. Those of economic importance include several important pathogens of trees and a few species that cause damage by rotting structural timber. Some of the Polyporales are commercially cultivated and marketed for use as food items or in traditional Chinese medicine.
In a series of publications in 1932, E. J. H. Corner explained the occurrence of different types of hyphae in the fruit bodies of polypore fungi. He introduced the concept of hyphal analysis, which later become a fundamental character in polypore taxonomy.[6][7][8]
The order Polyporales was not widely adopted by Gäumann's contemporaries; most mycologists and reference works preferring to use the catch-all, artificial order Aphyllophorales for polypores and other "non-gilled fungi". When an attempt was made to introduce a more natural, morphology-based classification of the fungi in the 1980s and 1990s, the order was still overlooked. A standard 1995 reference work placed most polypores and corticioid fungi in the Ganodermatales, Poriales, and Stereales.[9]
Simplified phylogenetic overview of the families (bolded) and clades (preceded with "/") recognized in Justo et al. 2017. Families marked with (*) were newly created.[10]
In an extensive molecular analysis, Manfred Binder and colleagues analyzed 6 genes from 373 species and confirmed the existence of four previously recognized lineages of Polyporales: the antrodia, core polyporoid, phlebioid, and residual polyporoid clades.[13] Extending this work, Alfredo Justo and colleagues proposed a phylogenetic overview of the Polyporales that included a new family-level classification. They assigned family names to 18 clades and four informal unranked clades. The families are listed below, followed by their taxonomic authorities and year of publication:[10]
Other families that putatively belong to the Polyporales, but for which molecular confirmation is absent or lacking, include Diachanthodaceae Jülich, (1981); Fragiliporiaceae Y.C.Dai, B.K.Cui & C.L.Zhao (2015); Hymenogrammaceae Jülich (1981); and Phaeotrametaceae Popoff ex Piątek (2005).[10] The Nigrofomitaceae, formerly placed in the Polyporales, was shown to be nested as a distinct lineage within the Hymenochaetales.[19]
The family Steccherinaceae was redefined in 2012 to contain most species of the poroid and hydnoid genera Antrodiella, Junghuhnia, and Steccherinum, as well as members of 12 other hydnoid and poroid genera that had been traditionally classified in the families Phanerochaetaceae, Polyporaceae, and Meruliaceae.[15] Several new genera were added to the Steccherinaceae in 2016–17.[20][21]
Wood-decay Polyporales reduce the volume of dead wood in the forest and are an important component of the carbon cycle.[13]Wood is composed of primarily three types of tissue: lignin, cellulose, and hemicelluloses. White rot species of Polyporales are efficient degraders of the decay-resistant polymer lignin, leaving partially degraded cellulose as a residue.[13] Brown rot species break down the cellulose fibres, leaving a brittle, brown lignin residue. Brown-rot residues such as humus can remain in the soil for hundreds of years, increasing aeration and water-holding capacity.[23]
Sparassis crispa (left) and Laetiporus sulphureus are two edible Polyporales species
Many wood-decay fungi in the genera Fomes, Fomitopsis and Ganoderma are pathogenic, causing butt and root rot of living trees and consequent losses in forestry plantations. Several species, such as the mine fungus Fibroporia vaillantii, can rot and damage structural timber.[28]
Fomitopsis betulina was formerly used in the manufacture of charcoal crayons.[37]Amadou, a spongy material derived from the fruit bodies of Fomes fomentarius, has been used since ancient times as a tinder. More recently, it has been used by dentists as a styptic, or as a felt-like material for making hats and other items.[38] The anise-scented fruit bodies of Haploporus odorus were used by some tribes of Plains Indians as a component of sacred objects. Laricifomes officinalis was used by nineteenth century Pacific northwestshamans for carving spirit figures.[39] Some species, including dyer's polypore (Phaeolus schweinitzii) and purple dye polypore (Hapalopilus nidulans) are used in mushroom dyeing.[40]
Fossilized fruit bodies of a Fomes species dating back to the Tertiary (66–2.6 Ma) were reported in Idaho in 1940.[47] A fossil fruit body of Ganodermites libycus was reported from the Early Miocene (23–2.6 Ma) in the Libyan Desert. This specimen is the earliest convincing fossil evidence for the Polyporales.[48]
Molecular clock techniques have been used to estimate the age of the Polyporales, suggesting that the order evolved either during the late Jurassic, about 203–250 Ma,[14] or, in more recent study, about 114 Ma.[49]
There are several genera classified in the Polyporales that for various reason have not been assigned to a specific family. They are incertae sedis with respect to familial placement. Some may be poorly known and/or not included in DNA phylogenetic studies, or when they have been, did not clearly group with any named family (In some cases a new family must be created rather than the placement clarified.). These include:
^ abcdeBinder, Manfred; Justo, Alfredo; Riley, Robert; Salamov, Asaf; Lopez-Giraldez, Francesc; Sjökvist, Elisabet; Copeland, Alex; Foster, Brian; Sun, Hui; Larsson, Ellen; Larsson, Karl-Henrik; Townsend, Jeffrey; Grigoriev, Igor V.; Hibbett, David S. (2013). "Phylogenetic and phylogenomic overview of the Polyporales". Mycologia. 105 (6): 1350–1373. doi:10.3852/13-003. PMID23935031. S2CID20812924.
^ abGarcia-Sandoval, R.; Wang, Z.; Binder, M.; Hibbett, D.S. (2011). "Molecular phylogenetics of the Gloeophyllales and relative ages of clades of Agaricomycotina producing a brown rot". Mycologia. 103 (1): 510–524. doi:10.3852/10-209. PMID21186327. S2CID9801943.
^ abcdefFloudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TK, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012). "The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes". Science. 336 (6089): 1715–1719. Bibcode:2012Sci...336.1715F. doi:10.1126/science.1221748. hdl:10261/60626. PMID22745431. S2CID37121590.
^Kendrick, Bryce (2017). The Fifth Kingdom. An Introduction to Mycology (4th ed.). Indianapolis: Hackett Publishing. pp. 124–125. ISBN978-1-58510-459-8.
^Kotiranta, Heikki; Kulju, Matti; Miettinen, Otto (2017). "Caudicicola gracilis (Polyporales, Basidiomycota), a new polypore species and genus from Finland". Annales Botanici Fennici. 54 (1–3): 159–167. doi:10.5735/085.054.0325. hdl:10138/234417. S2CID90050530.
^Lau, Beng Fye; Abdullah, Noorlidah (2017). "Bioprospecting of Lentinus squarrosulus Mont., an underutilized wild edible mushroom, as a potential source of functional ingredients: A review". Trends in Food Science & Technology. 61: 116–131. doi:10.1016/j.tifs.2016.11.017.
^Pegler D. (2001). "Useful fungi of the world: Amadou and Chaga". Mycologist. 15 (4): 153–154. doi:10.1016/S0269-915X(01)80004-5. In Germany, this soft, pliable 'felt' has been harvested for many years for a secondary function, namely in the manufacture of hats, dress adornments and purses.
^Bessette, Alan; Bessette, Arleen Rainis (2001). The Rainbow Beneath my Feet: A Mushroom Dyer's Field Guide. Syracuse, New York: Syracuse University Press. p. 96. ISBN978-0-8156-0680-2.
^Brown, Roland W. (1940). "A bracket fungus from the late Tertiary of southwestern Idaho". Journal of the Washington Academy of Sciences. 30 (10): 422–424. JSTOR24529677.
^Fleischmann, Andreas; Krings, Michael; Mayr, Helmut; Agerer, Reinhard (2007). "Structurally preserved polypores from the Neogene of North Africa: Ganodermites libycus gen. et sp. nov. (Polyporales, Ganodermataceae)". Review of Palaeobotany and Palynology. 145 (1–2): 159–172. Bibcode:2007RPaPa.145..159F. doi:10.1016/j.revpalbo.2006.10.001.
^Zhao, Rui-Lin; Li, Guo-Jie; Sánchez-Ramírez, Santiago; Stata, Matt; Yang, Zhu-Liang; Wu, Gang; Dai, Yu-Cheng; He, Shuang-Hui; Cui, Bao-Kai; Zhou, Jun-Liang; Wu, Fang; He, Mao-Qiang; Moncalvo, Jean-Marc (2017). "A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective". Fungal Diversity. 84 (1): 43–74. doi:10.1007/s13225-017-0381-5. S2CID1864841.
^Duhem, Bernard; Schultheis, Ben (2011). "Bourdotiella complicata gen. et sp. nov. de France". Cryptogamie, Mycologie (in French). 32 (4): 391–401. doi:10.7872/crym.v32.iss4.2011.391. S2CID84992028.
^Hjortstam K, Ryvarden L (2005). "New taxa and new combinations in tropical corticioid fungi, (Basidiomycotina, Aphyllophorales)". Synopsis Fungorum. 20: 33–41.
^Qin, Wen-Min; Wu, Fang; Zhou, Li-Wei (2016). "Donkioporiella mellea gen. et sp. nov. (Polyporales, Basidiomycota) from Guangxi, China". Cryptogamie, Mycologie. 37 (4): 437–447. doi:10.7872/crym/v37.iss4.2016.437. S2CID89715790.
^Hjortstam K, Ryvarden L (2004). "Some new tropical genera and species of corticioid fungi (Basidiomycotina, Aphyllophorales)". Synopsis Fungorum. 18: 20–32.