rutherford | |
---|---|
Unit of | Activity |
Symbol | Rd |
Named after | Lord Ernest Rutherford |
Conversions | |
1 Rd in ... | ... is equal to ... |
curie | 2.703×10−5 Ci |
SI derived units | 1 MBq |
SI base units | 106 s−1 |
The rutherford (symbol Rd) is a non-SI unit of radioactive decay. It is defined as the activity of a quantity of radioactive material in which one million nuclei decay per second. It is therefore equivalent to one megabecquerel, and one becquerel equals one microrutherford. One rutherford is equivalent to 2.703 × 10−5 curie.
The unit was introduced in 1946.[1] It was named after British/New Zealand physicist and Nobel laureate Lord Ernest Rutherford (Nobel Prize in 1908),[2] who was an early leader in the study of atomic nucleus disintegrations. After the becquerel was introduced in 1975[3] as the SI unit for activity, the rutherford became obsolete, and it is no longer commonly used.
The following table shows radiation quantities in SI and non-SI units:
Quantity | Unit | Symbol | Derivation | Year | SI equivalent |
---|---|---|---|---|---|
Activity (A) | becquerel | Bq | s−1 | 1974 | SI unit |
curie | Ci | 3.7×1010 s−1 | 1953 | 3.7×1010 Bq | |
rutherford | Rd | 106 s−1 | 1946 | 1000000 Bq | |
Exposure (X) | coulomb per kilogram | C/kg | C⋅kg−1 of air | 1974 | SI unit |
röntgen | R | esu / 0.001293 g of air | 1928 | 2.58×10−4 C/kg | |
Absorbed dose (D) | gray | Gy | J⋅kg−1 | 1974 | SI unit |
erg per gram | erg/g | erg⋅g−1 | 1950 | 1.0×10−4 Gy | |
rad | rad | 100 erg⋅g−1 | 1953 | 0.010 Gy | |
Equivalent dose (H) | sievert | Sv | J⋅kg−1 × WR | 1977 | SI unit |
röntgen equivalent man | rem | 100 erg⋅g−1 × WR | 1971 | 0.010 Sv | |
Effective dose (E) | sievert | Sv | J⋅kg−1 × WR × WT | 1977 | SI unit |
röntgen equivalent man | rem | 100 erg⋅g−1 × WR × WT | 1971 | 0.010 Sv |