In terrestrial gastropods the most important sensory organs are the olfactory organs which are located on the tips of the 4 tentacles.[1] Some terrestrial gastropods can track the odor of food using their tentacles (tropotaxis) and the wind (anemotaxis).[2]
In opisthobranch marine gastropods, the chemosensory organs are two protruding structures on top of the head. These are known as rhinophores. An opisthobranch sea slug Navanax inermis has chemoreceptors on the sides of its mouth to track mucopolysaccharides in the slime trails of prey, and of potential mates.[3]
The deepwater snail Bathynerita naticoidea can detect mussel beds containing the mussel Bathymodiolus childressi, because it is attracted to water that has cues in it from this species of mussel.[5]
In terrestrial pulmonate gastropods, eye spots are present at the tips of the tentacles in the Stylommatophora or at the base of the tentacles in the Basommatophora. These eye spots range from simple ocelli that cannot project an image (simply distinguishing light and dark), to more complex pit and even lens eyes.[6] Vision is not the most important requirement in terrestrial gastropods, because they are mainly nocturnal animals.[1]
Some gastropods, for example the freshwater apple snails (family Ampullariidae)[7] and marine species of genus Strombus[8] can completely regenerate their eyes. The gastropods in both of these families have lens eyes.
Morphological sequence of different types of multicellular eyes exemplified by gastropod eyes:[9]
This article incorporates CC-BY-2.0 text from the reference[9]
^ abcdChase R.: Sensory Organs and the Nervous System. in Barker G. M. (ed.): The biology of terrestrial molluscs. CABI Publishing, Oxon, UK, 2001, ISBN0-85199-318-4. 1–146, cited pages: 179–211.
^Michael D. Miller 1998. Navanax inermis. The Slug Site, accessed 23 March 2009
^Kelly, Paul M.; Cory, Jenny S. (1987). "Operculum closing as a defence against predatory leeches in four British freshwater prosobranch snails". Hydrobiologia. 144 (2): 121–4. doi:10.1007/BF00014525. S2CID41023961.
^Götting, Klaus-Jürgen (1994). "Schnecken". In Becker, U.; Ganter, S.; Just, C.; Sauermost, R. (eds.). Lexikon der Biologie. Heidelberg: Spektrum Akademischer Verlag. ISBN978-3-86025-156-0.[page needed]
^Bever MM, Borgens RB (January 1988). "Eye regeneration in the mystery snail". The Journal of Experimental Zoology. 245 (1): 33–42. doi:10.1002/jez.1402450106. PMID3351443.
^Hughes HP (August 1976). "Structure and regeneration of the eyes of strombid gastropods". Cell and Tissue Research. 171 (2): 259–71. doi:10.1007/BF00219410. PMID975213. S2CID25580163.
^O'Brien EK, Degnan BM (2003). "Expression of Pax258 in the gastropod statocyst: insights into the antiquity of metazoan geosensory organs". Evolution & Development. 5 (6): 572–8. doi:10.1046/j.1525-142X.2003.03062.x. PMID14984039. S2CID33747158.
Susswein, Abraham J.; Cappell, Mitchell S.; Bennett, Michael V. L. (1982). "Distance chemoreception in Navanax inermis". Marine Behaviour and Physiology. 8 (3): 231–41. doi:10.1080/10236248209387020.