SpaceX started launching Starlink satellites in 2019. As of September 2024, the constellation consists of over 7,000 mass-produced small satellites in low Earth orbit (LEO)[7] that communicate with designated ground transceivers. Nearly 12,000 satellites are planned to be deployed, with a possible later extension to 34,400. SpaceX announced reaching more than 1 million subscribers in December 2022[8] and 4 million subscribers in September 2024.[9]
The SpaceX satellite development facility in Redmond, Washington, houses the Starlink research, development, manufacturing, and orbit control facilities. In May 2018, SpaceX estimated the total cost of designing, building and deploying the constellation would be at least US$10 billion.[10] Revenues from Starlink in 2022 were reportedly $1.4 billion accompanied by a net loss, with a small profit being reported that began only in 2023.[11] Revenue is expected to reach $6.6 billion in 2024.[12]
Astronomers raised concerns about the effect the constellation may have on ground-based astronomy, and how the satellites will contribute to an already congested orbital environment.[16][17] SpaceX has attempted to mitigate astronometric interference concerns with measures to reduce the satellites' brightness during operation.[18] The satellites are equipped with Hall-effect thrusters allowing them to raise their orbit, station-keep, and de-orbit at the end of their lives. They are also designed to autonomously and smoothly avoid collisions based on uplinked tracking data.[19]
Constellations of low Earth orbit satellites were first conceptualized in the mid-1980s as part of the Strategic Defense Initiative, culminating in Brilliant Pebbles, where weapons were to be staged in low orbits to intercept ballistic missiles at short notice. The potential for low-latency communication was also recognized and development offshoots in the 1990s led to numerous commercial megaconstellations using around 100 satellites such as Celestri, Teledesic, Iridium, and Globalstar. However all entities entered bankruptcy by the dot-com bubble burst, due in part to excessive launch costs at the time.[20][21]
In 2004, Larry Williams, SpaceX VP of Strategic Relations and former VP of Teledesic's "Internet in the sky" program, opened the SpaceX Washington DC office.[22] That June, SpaceX acquired a stake in Surrey Satellite Technology (SSTL) as part of a "shared strategic vision".[23] SSTL was at that time working to extend the Internet into space.[24] However, SpaceX's stake was eventually sold back to EADS Astrium in 2008 after the company became more focused on navigation and Earth observation.[25]
Starlink was publicly announced in January 2015 with the opening of the SpaceX satellite development facility in Redmond, Washington. During the opening, Musk stated there is still significant unmet demand worldwide for low-cost broadband capabilities.[31][32] and that Starlink would target bandwidth to carry up to 50% of all backhaul communications traffic, and up to 10% of local Internet traffic, in high-density cities.[33][34] Musk further stated that the positive cash flow from selling satellite internet services would be necessary to fund their Mars plans.[35] Furthermore, SpaceX has long-term plans to develop and deploy a version of the satellite communication system to serve Mars.[36]
Starting with 60 engineers, the company operated in 2,800 m2 (30,000 sq ft) of leased space, and by January 2017 had taken on a 2,800 m2 (30,000 sq ft) second facility, both in Redmond.[37] In August 2018, SpaceX consolidated all their Seattle-area operations with a move to a larger three-building facility at Redmond Ridge Corporate Center to support satellite manufacturing in addition to R&D.[38] In July 2016, SpaceX acquired an additional 740 m2 (8,000 sq ft) creative space in Irvine, California (Orange County).[39] The Irvine office would include signal processing, RFIC, and ASIC development for the satellite program.[40]
By October 2016, the satellite division was focusing on a significant business challenge of achieving a sufficiently low-cost design for the user equipment. SpaceX President Gwynne Shotwell said then that the project remained in the "design phase as the company seeks to tackle issues related to user-terminal cost".[41]
In September 2017, the FCC ruled that half of the constellation must be in orbit within six years to comply with licensing terms, while the full system should be in orbit within nine years from the date of the license.[43]
SpaceX filed documents in late 2017 with the FCC to clarify their space debris mitigation plan, under which the company was to:
"...implement an operations plan for the orderly de-orbit of satellites nearing the end of their useful lives (roughly five to seven years) at a rate far faster than is required under international standards. [Satellites] will de-orbit by propulsively moving to a disposal orbit from which they will re-enter the Earth's atmosphere within approximately one year after completion of their mission."[44]
In March 2018, the FCC granted SpaceX approval for the initial 4,425 satellites, with some conditions. SpaceX would need to obtain a separate approval from the ITU.[45][46] The FCC supported a NASA request to ask SpaceX to achieve an even higher level of de-orbiting reliability than the standard that NASA had previously used for itself: reliably de-orbiting 90% of the satellites after their missions are complete.[47]
In May 2018, SpaceX expected the total cost of development and buildout of the constellation to approach $10 billion (equivalent to $11,950,000,000 in 2023).[10] In mid-2018, SpaceX reorganized the satellite development division in Redmond, and terminated several members of senior management.[38]
After launching two test satellites in February 2018, the first batch of 60 operational Starlink satellites were launched in May 2019.[48]
By late 2019, SpaceX was transitioning their satellite efforts from research and development to manufacturing, with the planned first launch of a large group of satellites to orbit, and the clear need to achieve an average launch rate of "44 high-performance, low-cost spacecraft built and launched every month for the next 60 months" to get the 2,200 satellites launched to support their FCC spectrum allocation license assignment.[49] SpaceX said they will meet the deadline of having half the constellation "in orbit within six years of authorization... and the full system in nine years".[50]
By July of 2020, Starlink's limited beta internet service was opened to invitees from the public. Invitees had to sign non-disclosure agreements, and were only charged $2 per month to test out billing services. [51] In October 2020 a wider public beta was launched, where beta testers were charged the full monthly cost and could speak freely about their experience. Starlink beta testers reported speeds over 150 Mbit/s, above the range announced for the public beta test.[52]
Pre-orders were first opened to the public in the United States and Canada in early 2021.[53]
The FCC had earlier awarded SpaceX with $885.5 million worth of federal subsidies to support rural broadband customers in 35 U.S. states through Starlink.[54] but the $885.5 million aid package was revoked in August 2022, with the FCC stating that Starlink "failed to demonstrate" its ability to deliver the promised service.[55] SpaceX later appealed the decision saying they met or surpassed all RDOF deployment requirements that existed during bidding and that the FCC created "new standards that no bidder could meet today".[56] In December 2023, the FCC formally denied SpaceX's appeal since "Starlink had not shown that it was reasonably capable of fulfilling RDOF's requirements to deploy a network of the scope, scale, and size" required to win the subsidy.[57]
In March 2021, SpaceX submitted an application to the FCC for mobile variations of their terminal designed for vehicles, vessels and aircraft,[58][59] and later in June the company applied to the FCC to use mobile Starlink transceivers on launch vehicles flying to Earth orbit, after having previously tested high-altitude low-velocity mobile use on a rocket prototype in May 2021.[60]
In 2022, SpaceX announced the Starlink Business service tier, a higher-performance version of the service. It provides a larger high-performance antenna and listed speeds of between 150 and 500 Mbit/s with a cost of $2500 for the antenna and a $500 monthly service fee.[61] The service includes 24/7, prioritized support.[61] Deliveries are advertised to begin in the second quarter of 2022.[62] The FCC also approved the licensing of Starlink services to boats, aircraft, and moving vehicles.[63] Starlink terminal production being delayed by the 2020–2023 global chip shortage led to only 5,000 subscribers for the last two months of 2021 but this was soon resolved.[64]
On December 1, 2022, the FCC issued an approval for SpaceX[65] to launch the initial 7500 satellites for its second-generation (Gen2) constellation, in three low-Earth-orbit orbital shells, at 525, 530, and 535 km (326, 329 and 332 mile) altitude. Overall, SpaceX had requested approval for as many as 29,988 Gen2 satellites, with approximately 10,000 in the 525–535 km (326 to 332 mile) altitude shells, plus ~20,000 in 340–360 km (210 mile to 220 mile) shells and nearly 500 in 604–614 km (375 to 382 mile) shells. However, the FCC noted that this is not a net increase in approved on-orbit satellites for SpaceX since SpaceX is no longer planning to deploy 7518 V-band satellites at 340 km (210 mi) altitude that had previously been authorized.[66]
In March 2023, the company reported that they were manufacturing six Starlink "v2 mini" satellites per day as well as thousands of users terminals. The v2 mini has Gen2 Starlink satellite features while being assembled in a smaller form factor than the larger Gen2 sats. The Gen2 satellites require the 9 meter (29.5 foot) diameter Starship in order to launch them. The Starlink business unit had a single cash-flow-positive quarter during 2022, and is expecting to be profitable in 2023.[67]
In May 2018, SpaceX estimated the total cost of designing, building and deploying the constellation would be at least US$10 billion. In January 2017, SpaceX expected annual revenue from Starlink to reach $12 billion by 2022 and exceed $30 billion by 2025. Starlink was at annual loss in 2021.[68] Revenues from Starlink in 2022 were reportedly $1.4 billion accompanied by a net loss, with a small profit being reported by Musk starting in 2023.
Tensions between Brazil and Elon Musk's business ventures escalated in 2024 as the country's telecom regulator Anatel threatened to sanction Starlink after Brazil's top court upheld a ban on X. Luiz Inácio Lula da Silva supported the decision, citing X's role in allegedly spreading hate and misinformation undermining Brazil's democracy. Judge Alexandre de Moraes had frozen Starlink's accounts, and Starlink refused to comply with an order to block domestic access to X until the freeze was lifted, risking its license to operate.[69]
The Wall Street Journal reported in October 2024 that Musk had been in regular contact with Russian President Vladimir Putin and other high ranking Russian government officials since late 2022, discussing personal topics, business and geopolitical matters. The Journal reported that Putin had asked Musk to avoid activating his Starlink satellite system over Taiwan, to appease Chinese Communist Party general secretaryXi Jinping. The communications were reported to be a closely held secret in government, given Musk's involvement in promoting the presidential candidacy of Donald Trump, and his security clearance to access classified government information. One person said no alerts were raised by the U.S. government, noting the dilemma of the government being dependent on Musk's technologies. Musk initially voiced support for Ukraine's defense against Russia's 2022 invasion by donating Starlink terminals, but made later decisions to limit Ukrainian access to Starlink, which coincided with Russian pressure in public and in private.[70] In a November 2024 call with President [Volodymyr Zelenskyy], Musk said he will continue supporting Ukraine through Starlink.[71]
SpaceX has asked its numerous Taiwanese suppliers to move production abroad citing geopolitical risk concerns.[72][73] This move was questioned by the Taiwanese government and resulted in significant anger from the Taiwanese public with citizens pointing out that Starlink was unavailable in Taiwan despite its suppliers underlying the technology and others calling for a boycott of Tesla products.[74]
In November 2024, SpaceX proposed a constellation of Starlink of satellites around Mars, referred to as "Marslink." The proposed system would be capable of providing more than 4Mbps of bandwidth between Earth and Mars as well as imaging services.[75]
Starting in July 2024, SpaceX began conducting tests on Starlink in cooperation with the Romanian Ministry of National Defense and National Authority for Communications Administration and Regulation (ANCOM). These tests aim at demonstrating that the Equivalent Power Flux Density (EPFD) limit can be safely increased, thus improving the speed and coverage area of Starlink, without affecting classic, geostationary satellites. The results of these tests will be used to help change a rule set by the International Telecommunication Union in the 1990s regarding the limits of non-geostationary satellites.[76][77]
Starlink dish on the sidewalk of a residential home
Pole mount
Starlink provides satellite-based internet connectivity to underserved areas of the planet, as well as competitively priced service in more urbanized areas.[90]
In the United States, Starlink charged, at launch, a one-time hardware fee of $599 for a user terminal and $120 per month for internet service at a fixed service address.[91] An additional $25 per month allows the user terminal to move beyond a fixed location (Starlink For RVs) but with service speeds deprioritized compared to the fixed users in that area.[92][93] Fixed users are told to expect typical throughput of "50 to 150 Mbit/s and latency from 20 to 40 ms",[94] a study found users averaged download speeds of 90.55 Mbit/s in the first quarter of 2022, but dropped to 62.5 Mbit/s in the second quarter.[95] A higher performance version of the service (Starlink Business) advertises speeds of 150 to 500 Mbit/s in exchange for a more costly $2,500 user terminal and a $500 monthly service fee.[61] Another service called Starlink Maritime became available in July 2022 providing internet access on the open ocean, with speeds of 350 Mbit/s, requiring purchase of a maritime-grade $10,000 user terminal and a $5,000 monthly service fee.[96]
Sales are capped to a few hundred fixed users per 20 km (10 mile) "service cell area" due to limited wireless capacity. Starlink alternatively offers a Best Effort service tier allowing homes in capped areas to receive the current unused bandwidth of their cell while they are on the waiting list for more prioritized service. The price and equipment are the same as the residential service at $110 per month.[97][98] To improve the service quality in densely populated areas, Starlink introduced a monthly 1 TB data cap for all non-business users which was enforced starting in 2023.[97][99]
In August 2022, SpaceX lowered monthly service costs for users in select countries.[100] For example, users in Brazil and Chile saw monthly fee decreases of about 50%.[101]
According to internet analysis company Ookla, Starlink speeds degraded during the first half of 2022 as more customers signed up for the service. SpaceX has said that Starlink speeds will improve as more satellites are deployed.[95]
In September 2023, satellite operator SES announced a satellite internet service for cruise lines using both the Starlink satellites in Low Earth Orbit (LEO) and SES' own O3b mPOWERsatellite constellation in Medium Earth Orbit (MEO). Integrated, sold and delivered by SES, the SES Cruise mPOWERED + Starlink service claims to combine the best features of LEO and MEO orbits to provide high-speed, secure connectivity at up to 3 Gbit/s per ship, to cruise ships anywhere in the world. In February 2024, SES announced that Virgin Voyages will be the first cruise line to deploy the service.[102][103][104]
For future service, T-Mobile US and SpaceX are partnering to add satellite cellular service capability to Starlink satellites. It will provide dead-zone cell phone coverage across the US using the existing midband PCS spectrum owned by T-Mobile.[105][106] Cell coverage will begin with text messaging and expand to include voice and limited data services later, with testing to begin in 2024.[107] T-Mobile plans to connect to Starlink satellites via existing 4G LTE mobile devices, unlike previous generations of satellite phones, which used specialized radios, modems, and antennas to connect to satellites in higher orbits.[5] Bandwidth will be limited to 2 to 4 megabits per second total, split across a very large cell coverage area, which would be limited to thousands of voice calls or millions of text messages simultaneously in a coverage area. The size of a single coverage cell has not yet been publicly released.[105]
The first six cell phone capable satellites launched on January 2, 2024.[107]
Rogers Communications, in April 2023, signed an agreement with SpaceX for using Starlink for satellite-to-phone services in Canada.[108] Also in April 2023, One NZ (formerly Vodafone New Zealand) announced that they would be partnering with SpaceX's Starlink to provide 100% mobile network coverage over New Zealand. SMS text service is expected to begin in 2024, with voice and data functionality in 2025.[109][110] In July 2023, Optus in Australia announced a similar partnership.[111]
On January 8, 2024, it was confirmed by SpaceX that they had successfully tested text messaging using the new Direct-to-Cell capability on T-Mobile's network.[112]
On May 16, 2024, Musk visited Indonesia to oversee the first use of Starlink service there. He met with government ministers to discuss collaboration and the potential impact on Indonesia's connectivity.[113] On May 19, Musk and Space X together with Indonesian Health Minister Budi Gunadi Sadikin ushered in Starlink for the nation's health sector, aiming to improve access in remote parts of the archipelago.[114]
SpaceX also designs, builds, and launches customized military satellites based on variants of the Starlink satellite bus, with the largest publicly known customer being the Space Development Agency (SDA).
SDA accelerates development of missile defense capabilities, primarily via observation platforms, using industry-procured low-cost low Earth orbit satellite platforms.[115]
In October 2020, SDA awarded SpaceX an initial $150 million dual-use contract to develop 4 satellites to detect and track ballistic and hypersonic missiles.[116] The first batch of satellites were originally scheduled to launch September 2022 to form part of the Tracking Layer Tranche 0 of the U.S. Space Force's National Defense Space Architecture (NDSA), a network of satellites performing various roles including missile tracking.[117] The launch schedule slipped multiple times but eventually launched in April 2023.[118][119]
In 2020, SpaceX hired retired four-star general Terrence J. O'Shaughnessy who, according to some sources, is associated with Starlink's military satellite development, and according to one source, is listed as a "chief operating officer" at SpaceX.[120][121] While still on active duty, O'Shaughnessy advocated before the United States Senate Committee on Armed Services for a layered capability with lethal follow-on that incorporates machine learning and artificial intelligence to gather and act upon sensor data quickly.[122]
SpaceX was not awarded a contract for the larger Tranche 1, with awards going to York Space Systems, Lockheed Martin Space, and Northrop Grumman Space Systems.[123]
In December 2022, SpaceX announced Starshield, a separate Starlink service designed for government entities and military agencies.[124][14][15][125] Starshield enables the U.S. Department of Defense (DoD) to own or lease Starshield satellites for partners and allies.[124]Cybernews remarked that Starshield was first announced in late 2022, when Starlink's presence in Ukraine showed the importance it can have in modern warfare.[126] While Starlink had not been adapted for military use, Starshield has the usual requirements for mobile military systems like encryption and anti-jam capabilities.[125] Elon Musk stated that "Starlink needs to be a civilian network, not a participant to combat. Starshield will be owned by the US government and controlled by DoD Space Force. This is the right order of things."[127]
Starshield satellites are advertised as capable of integrating a wide variety of payloads. Starshield satellites will be compatible with, and interconnect to, the existing commercial Starlink satellites via optical inter-satellite links.[128]
In January 2022, SpaceX deployed four national security satellites for the U.S. government on their Transporter-3 rideshare mission.[129][130] In the same year they launched another group of four U.S. satellites with an on-orbit spare Globalstar FM-15 satellite in June.[131][129][132][133]
In September 2023, the Starshield program received its first contract from the U.S. Space Force to provide customized satellite communications for the military.[134] This is under the Space Force's new "Proliferated Low Earth Orbit" program for LEO satellites, where Space Force will allocate up to $900 million worth of contracts over the next 10 years. Although 16 vendors are competing for awards, the SpaceX contract is the only one to have been issued to date.[135][134] The one-year Starshield contract was awarded on September 1, 2023.[127] The contract is expected to support 54 mission partners across the Army, Navy, Air Force, and Coast Guard.[127]
Expert on battlefield communications Thomas Wellington has argued that Starlink signals, because they use narrow focused beams, are less vulnerable to interference and jamming by the enemy in wartime than satellites flying in higher orbits.[139]
In May 2022, Chinese military researchers published an article in a peer-reviewed journal describing a strategy for destroying the Starlink constellation if they threaten national security.[140][141][142] The researchers specifically highlight concerns with reported Starlink military capabilities. Musk has declared Starlink is meant for peaceful use and has suggested Starlink could enforce peace by taking strategic initiative.[143] Russian officials including the head of Russia's space agency Dmitry Rogozin, have warned Elon Musk and criticized Starlink, including warning that Starlink could become a legitimate military target in the future.[144][145]
Starlink was activated during the Russian invasion of Ukraine, after a request from the Ukrainian government.[146][147] Ukraine's military and government rapidly became dependent on Starlink to maintain Internet access.[148][149][139] Starlink is used by Ukraine for communication, such as keeping in touch with the outside world and keeping the energy infrastructure working.[150][151]
The service is also notably used for warfare. Starlink is used for connecting combat drones, naval drones, artillery fire coordination systems and attacks on Russian positions.[152][139] SpaceX has expressed reservations about the offensive use of Starlink by Ukraine beyond military communications and restricted Starlink communication technology for military use on weapon systems,[153] but has kept most of the service online.[154][155] Its use in attacking Russian targets has been criticized by the Kremlin.[156]
Musk has warned that the service was costing $20 million per month, and a Ukrainian official estimated SpaceX's contributions as over $100 million.[151] In June 2023, the United States Department of Defense signed a contract with SpaceX to finance Starlink use in Ukraine.[157][155]
In October 2023 after the Israel–Hamas conflict started, users shared the hashtag #starlinkforgaza on Elon Musk's social network X (formerly Twitter), demanding he activate Starlink in Gaza after Internet service in the region was lost.[158] Musk answered that Starlink connectivity would be provided for aid groups in Gaza.[159] At the end of November, Musk said the Starlink service would only be provided for Gaza with the approval of the government of Israel.[160]
In 2022, the U.S. State Department and U.S. Treasury Department updated rules regarding export of technology to Iran, allowing Starlink to be exported to Iran in support of the Iranian protests against compulsory hijab, which had triggered extensive government censorship.[161] Immediately afterwards, Starlink service was activated in Iran.[162] In 2023, the Iranian government filed a complaint with the ITU against SpaceX for unauthorized Starlink operation in Iran.[163] In October 2023 and March 2024, the ITU ruled in favor of Iran, dismissing a SpaceX assertion that it should not be expected to verify the location of every terminal connecting to its satellites.[163] Iran claimed that SpaceX was capable of determining their user terminal locations by citing a tweet from Musk saying there were 100 Starlink terminals operating within Iran.[163][164]
Internet availability and regulatory approval by country
In order to offer satellite services in any nation-state, International Telecommunication Union (ITU) regulations and long-standing international treaties require that landing rights be granted by each country jurisdiction, and within a country, by the national communications regulators. As a result, even though the Starlink network has near-global reach at latitudes below approximately 60°, broadband services can only be provided in 40 countries as of September 2022.[165] SpaceX can also have business operation and economic considerations that may make a difference in which countries Starlink service is offered, in which order, and how soon. For example, SpaceX formally requested authorization for Canada only in June 2020,[166] the Canadian regulatory authority approved it in November 2020,[167] and SpaceX rolled out service two months later, in January 2021.[168] As of September 2022, Starlink services were on offer in 40 countries,[165] with applications pending regulatory approval in many more.[169]
Canada was the first outside country to approve the service with the Innovation, Science and Economic Development Canada announcing regulatory approval for the Starlink low Earth orbit satellite constellation on November 6, 2020.[167]
In May 2022, Starlink entered the Philippine market, the company's first deployment in Asia, because of a landmark legislative change (RA 11659, Public Services Act) about all-foreign allowance of company ownership in regards to utility entities such as internet and telco companies. Starlink got provisional permission from the country's Department of Information and Communication Technologies (DICT), National Telecommunications Commission (NTC), and Department of Trade and Industry (DTI) and soon began commercial services, aimed at regions with lower internet connectivity.[170]
In August 2022, SpaceX secured its first contract for services in the passenger shipping industry. Royal Caribbean Group has added Starlink internet to Freedom of the Seas and planned to offer the service on 50 ships under its Royal Caribbean International, Celebrity Cruises, and Silversea Cruises brands by March 2023.[63] Starlink services on private jet charter flights in the U.S. by JSX airline are expected to begin in late 2022, and Hawaiian Airlines had contracted to provide "Starlink services on transpacific flights to and from Hawaii in 2023."[63]
In June 2023, a license to offer internet services in Zambia was granted to Starlink by the Zambian Government through its Electronic Government Division – SMART Zambia, after the completion of many trial projects throughout the country.[171][172][173] In October 2023, Starlink officially went live in Zambia.[174][175][176]
In July 2023, the Mongolian government issued two licenses to SpaceX to provide internet access in the country.[177]
In July 2023, it was reported by Bloomberg that attempts to sell the service to Taiwan in 2022 fell through when SpaceX insisted on 100% ownership of the Taiwan subsidiary running Starlink in the country. This went against Taiwanese law that required that internet service providers (ISP) are at least 51% controlled by local companies, an impracticality when dealing with a globe-spanning ISP.[178]
Japan's major mobile provider, KDDI, announced a partnership with SpaceX to begin offering in 2022 expanded connectivity for its rural mobile customers via 1,200 remote mobile towers.[179]
On April 25, 2022, Hawaiian Airlines announced an agreement with Starlink to provide free internet access on its aircraft, becoming the first airline to use Starlink.[180] By July 2022, Starlink internet service was available in 36 countries and 41 markets.[181]
In May 2022, it was announced that regulatory approval had been granted for Nigeria, Mozambique,[182] and the Philippines.[183][184] In the Philippines, commercial availability began on February 22, 2023.[185]
In September 2022, trials began at McMurdo Station in Antarctica and from December 2022 on field missions. Antarctica has no ground stations, so polar-orbiting satellites with optical interlinks are used to connect to ground stations in South America, New Zealand, and Australia.[186][187]
In September 2023, the US-based United Against Nuclear Iran started donating subscriptions and terminals to Iranians to allow them to circumvent Iran's internet blackout.[188][189]
In September 2023, it was reported by some Indian news outlets that Starlink would imminently receive its license to operate in India after Starlink was able to meet all regulatory requirements, but that it would still be required to apply for spectrum allocation in order to provide service.[190][191] SpaceX had earlier sold 5000 Starlink preorders in India,[192] and in 2021 had announced that Sanjay Bhargava, who had worked with Musk as part of a team that founded electronic payment firm PayPal, would head the tech billionaire entrepreneur's Starlink satellite broadband venture in India.[193] Three months later, Bhargava resigned "for personal reasons" after the Indian government ordered SpaceX to halt selling preorders for Starlink service until SpaceX gained regulatory approval for providing satellite internet services in the country.[192] In April 2024, it was reported in some Indian news outlets that Starlink had received its "in-principle government approval" and that the approval now "lies at the desk of communications minister Ashwini Vaishnaw"[194]
In November 2023, Starlink received the licenses to operate in Fiji.[195] The service was launched in Fiji in May 2024.[196]
In April 2024, it was reported that the company would begin trial service in Indonesia in May.[197] Starlink received its license to operate in Indonesia in early May.[198]
In May 2024, Starlink service was available for pre-order in Sri Lanka, pending regulatory approval.[199] Starlink received its license to operate in Sri Lanka in August of the same year.[200]
In August 2024, Starlink received the licenses to operate in Yemen.[201] Starlink services will soon be implemented through the corporation’s sales points distributed across most governorates. These points will provide a full range of services, including device sales, activation, subscription fee payments, and direct technical support.[202]
On 22 October, 2024, at 35,000 feet Qatar Airways launched the Starlink service on a Boeing 777 flight from Doha to London. This marks another step forward to ultra-high-speed, low-latency internet.[203] As of November 2024, Morocco is set to give regulatory approval to Starlink by 2025.[204]
Original debut May 2021,[214][215] Revoked April 2022,[216] Re-approved June 2022[217]
Approval originally given in February 2021 but the Conseil d'État annulled that Decision on April 5, 2022, due to lack of public consultation.[216] Approval was given again after consultation was completed on June 2, 2022.[217] Service expanded to Saint Martin and Saint Barthélemy in July 2022.[181] Service expanded to Martinique and Guadeloupe in September 2022.[218]
Activated without Iranian government permission, but with permission of the U.S. government, in response to Iranian censorship as a result of Iranian protests against compulsory hijab.[162]
This article needs to be updated. Please help update this article to reflect recent events or newly available information.(May 2024)
The internet communication satellites were expected to be smallsats, 100 to 500 kg (220 to 1,100 lb) in mass, and were intended to be in low Earth orbit (LEO) at an altitude of approximately 1,100 km (680 mi), according to early public releases of information in 2015. The first significant deployment of 60 satellites was in May 2019, with each satellite weighing 227 kg (500 lb).[48] SpaceX decided to place the satellites at a relatively low 550 km (340 mi) due to concerns associated with space debris from failures or low fuel in the space environment, as well as letting them use fewer satellites than what was initially needed.[304] Initial plans as of January 2015[update] were for the constellation to be made up of approximately 4,000 cross-linked[305] satellites, more than twice as many operational satellites as were in orbit in January 2015.[34]
The satellites employ optical inter-satellite links and phased array beam-forming and digital processing technologies in the Ku and Ka microwave bands (super high frequency [SHF] to extremely high frequency [EHF]), according to documents filed with the U.S. FCC.[306][307] While specifics of the phased array technologies have been disclosed as part of the frequency application, SpaceX enforced confidentiality regarding details of the optical inter-satellite links.[308] Early satellites were launched without laser links. The inter-satellite laser links were successfully tested in late 2020.[309][310]
The satellites are mass-produced, at a much lower cost per unit of capability than previously existing satellites. Musk said, "We're going to try and do for satellites what we've done for rockets."[311] "In order to revolutionize space, we have to address both satellites and rockets."[34] "Smaller satellites are crucial to lowering the cost of space-based Internet and communications".[312]
In February 2015, SpaceX asked the FCC to consider future innovative uses of the Ka-band spectrum before the FCC commits to 5G communications regulations that would create barriers to entry, since SpaceX is a new entrant to the satellite communications market. The SpaceX non-geostationary orbit communications satellite constellation will operate in the high-frequency bands above 24 GHz, "where steerable Earth station transmit antennas would have a wider geographic impact, and significantly lower satellite altitudes magnify the impact of aggregate interference from terrestrial transmissions".[313]
Internet traffic via a geostationary satellite has a minimum theoretical round-trip latency of at least 477 milliseconds (ms; between user and ground gateway), but in practice, current satellites have latencies of 600 ms or more. Starlink satellites are orbiting at 1⁄105 to 1⁄30 of the height of geostationary orbits, and thus offer more practical Earth-to-satellite latencies of around 25 to 35 ms, comparable to existing cable and fiber networks.[314] The system uses a peer-to-peer protocol claimed to be "simpler than IPv6"; it also incorporates native end-to-end encryption.[315]
Starlink satellites use Hall-effect thrusters with krypton or argon gas as the reaction mass[48][316] for orbit raising and station keeping.[317] Krypton Hall thrusters tend to exhibit significantly higher erosion of the flow channel compared to a similar electric propulsion system operated with xenon, but krypton is much more abundant and has a lower market price.[318] SpaceX claims that its 2nd generation thruster using argon has 2.4× the thrust and 1.5× the specific impulse of the krypton fueled thruster.[319]
The system does not directly connect from its satellites to handsets (like the constellations from Iridium, Globalstar, Thuraya and Inmarsat). Instead, it is linked to flat user terminals the size of a pizza box, which have phased array antennas and track the satellites. The terminals can be mounted anywhere, as long as they can see the sky.[305] This includes fast-moving objects like trains.[320] Photographs of the customer antennas were first seen on the internet in June 2020, supporting earlier statements by SpaceX CEO Musk that the terminals would look like a "UFO on a stick. Starlink Terminal has motors to self-adjust optimal angle to view sky".[321] The antenna is known internally as "Dishy McFlatface".[322][323]
In October 2020, SpaceX launched a paid-for beta service in the U.S. called "Better Than Nothing Beta", charging $499 (equivalent to $578.8 in 2023) for a user terminal, with an expected service of "50 to 150 Mbit/s and latency from 20 to 40 ms over the next several months".[94] From January 2021, the paid-for beta service was extended to other continents, starting with the United Kingdom.[324]
A larger, high-performance version of the antenna is available for use with the Starlink Business service tier.[61]
In September 2020, SpaceX applied for permission to put terminals on 10 of its ships with the expectation of entering the maritime market in the future.[325]
In August 2022, and in response to an open invitation from SpaceX to have the terminal examined by the security community, security specialist Lennert Wouters presented several technical architecture details about the then-current starlink terminals: the main control unit of the dish is a STMicroelectronics custom designed chip code-named Catson which is a quad-core ARM Cortex-A53-based control processor running the Linux kernel and booted using U-Boot. The main processor uses several other custom chips such as a digital beam former named Shiraz and a front-end module named Pulsarad. The main control unit controls an array of digital beamformers. Each beamformer controls 16 front-end modules. In addition the terminal has a GPS receiver, motor controllers, synchronous clock generation and Power over Ethernet circuits, all manufactured by STMicroelectronics.[326]
In June 2024, a portable user terminal dubbed "Starlink Mini" was announced to be imminently available. The Mini supports 100 Mbps of download speed and will fit in a backpack.[327] Initial rollout was in Latin America at a $200 price point.[328]
SpaceX has made applications to the FCC for at least 32 ground stations in United States, and as of July 2020[update] has approvals for five of them (in five states). Until February 2023, Starlink used the Ka-band to connect with ground stations.[329] With the launch of v2 Mini, frequencies were added in the 71–86 GHz W band (or E band waveguide) range.[330]
A typical ground station[when?] has nine 2.86 m (9.4 ft) antennas in a 400 m2 (4,306 sq ft) fenced in area.[331]
According to their filing, SpaceX's ground stations would also be installed on-site at Google data-centers world-wide.[332]
MicroSat-1a and MicroSat-1b were originally slated to be launched into 625 km (388 mi) circular orbits at approximately 86.4° inclination, and to include panchromatic video imager cameras to film images of Earth and the satellite.[333] The two satellites, "MicroSat-1a" and "MicroSat-1b" were meant to be launched together as secondary payloads on one of the Iridium NEXT flights, but they were instead used for ground-based tests.[334]
At the time of the June 2015 announcement, SpaceX had stated plans to launch the first two demonstration satellites in 2016,[335] but the target date was subsequently moved out to 2018.[336] SpaceX began flight testing their satellite technologies in 2018[336] with the launch of two test satellites. The two identical satellites were called MicroSat-2a and MicroSat-2b[337] during development but were renamed Tintin A and Tintin B upon orbital deployment on February 22, 2018. The satellites were launched by a Falcon 9 rocket, and they were piggy-pack payloads launching with the Paz satellite.
Tintin A and B were inserted into a 514 km (319 mi) orbit. Per FCC filings,[338] they were intended to raise themselves to a 1,125 km (699 mi) orbit, the operational altitude for Starlink LEO satellites per the earliest regulatory filings, but stayed close to their original orbits. SpaceX announced in November 2018 that they would like to operate an initial shell of about 1600 satellites in the constellation at about 550 km (340 mi) orbital altitude, at an altitude similar to the orbits Tintin A and B stayed in.[339]
The satellites orbit in a circularlow Earth orbit at about 500 km (310 mi) altitude[340] in a high-inclination orbit for a planned six to twelve-month duration. The satellites communicate with three testing ground stations in Washington State and California for short-term experiments of less than ten minutes duration, roughly daily.[335][341]
One of them, numbered 1130 and called DarkSat, had its albedo reduced using a special coating but the method was abandoned due to thermal issues and IR reflectivity.[344][345]
All satellites launched since the ninth launch at August 2020 have visors to block sunlight from reflecting from parts of the satellite to reduce its albedo further.[346][347][348][349]
These are satellites buses with two solar arrays derived from Starlink v1.5 and v2.0 for military use and can host classified government or military payloads.[352]
SpaceX was preparing for the production of Starlink v2 satellites by early 2021.[353] According to Musk, Starlink v2 satellites will be "…an order of magnitude better than Starlink 1" in terms of communications bandwidth.[354]
SpaceX hoped to begin launching Starlink v2 in 2022. As of May 2022[update], SpaceX had said publicly that the satellites of second-generation (Gen2) constellation would need to be launched on Starship, as they are too large to fit inside a Falcon 9fairing.[330] However, in August 2022, SpaceX made formal regulatory filings with the FCC that indicated they would build satellites of the second-generation (Gen2) constellation in two different, but technically identical, form factors: one with the physical structures tailored to launching on Falcon 9, and one tailored for the launching on Starship.[105][355] Starlink v2 is both larger and heavier than Starlink v1 satellites.
Starlink second-generation satellites planned for launch on Starship have the following characteristics:[2][355]
Further improvements to reduce its brightness, including the use of a dielectric mirror film.[357]
On 2,016 of the initially licensed 7,500 satellites:[358] Gen2 Starlink satellites will also include an approximately 25 square meter antenna that would allow T-Mobile subscribers to be able to communicate directly via satellite through their regular mobile devices.[105] It will be implemented via a German-licensed hosted payload developed together with SpaceX's subsidiary Swarm Technologies and T-Mobile.[358] This hardware is supplemental to the existing Ku-band and Ka-band systems, and inter-satellite laser links, that have been on the first generation satellites launching as of mid-2022.[citation needed]
In October 2022, SpaceX revealed the configuration of early v2s to be launched on Falcon 9.[359] In May 2023, SpaceX introduced two more form factors with direct-to-cellular (DtC) capability.[360]
Bus F9-1, 303 kg (668 lbs) mass, having roughly the same dimensions and mass as V1.5 satellites. Deployed in Group 5 (see constellation design section).[361]
Bus F9-2 (typically called "v2 mini"),[105] up to 800 kg (1,764 lbs) mass and measuring 4.1 m (13 ft) by 2.7 m (8 ft 10 in) with a total array of 120 m2 (1,300 sq ft). The Solar arrays are 2 in number. It could offer around 3–4 times more usable bandwidth per satellite.[362] They are smaller than Starlink's original ones (and so can be launched on Falcon 9) and have four times the capacity to the ground station to increase speed and capacity. This is due to a more efficient array of antennas and the use of radio frequencies in the W band (E band waveguide) range.[330] They were deployed in Groups 6 and 7 (see constellation design section).[363]
Bus F9-3, F9-2 with direct-to-cellular capability. The bus length increased to 7.4 m (24 ft). Mass increased to 970 kg (2,152 lbs).[360] Deployed in Group 7 (see constellation design section).
Bus Starship-1 (planned), 2000 kg (4,409 lbs) mass and measuring 6.4 m (21 ft) by 2.7 m (8 ft 10 in) with a total array of 257 m2 (2,770 sq ft).
Bus Starship-2 (planned), Starship-1 with direct-to-cellular capability. The bus length increased to 10.1 m (33 ft).[360]
The first six F9-3 satellites with direct-to-cellular (DtC) capability were launched on January 2, 2024, in Groups 7–9.[364]
Between February 2018 and May 2024, SpaceX successfully launched over 6,000 Starlink satellites into orbit, including prototypes and satellites that later failed or were de-orbited before entering operational service.[7] In March 2020, SpaceX reported producing six satellites per day.[365]
The deployment of the first 1,440 satellites was planned in 72 orbital planes of 20 satellites each,[366] with a requested lower minimum elevation angle of beams to improve reception: 25° rather than the 40° of the other two orbital shells.[339]: 17 SpaceX launched the first 60 satellites of the constellation in May 2019 into a 550 km (340 mi) orbit and expected up to six launches in 2019 at that time, with 720 satellites (12 × 60) for continuous coverage in 2020.[367][368]
Starlink satellites are also planned to launch on Starship, an under-development rocket of SpaceX with a much larger payload capability. The initial announcement included plans to launch 400 Starlink (version 1.0) satellites at a time.[369] Current plans now call for Starship to be the only launch vehicle to be used to launch the much larger Starlink version 2.0.
In March 2017, SpaceX filed plans with the FCC to field a second orbital shell of more than 7,500 "V-band satellites in non-geosynchronous orbits to provide communications services" in an electromagnetic spectrum that has not previously been heavily employed for commercial communications services. Called the "Very-low Earth orbit (VLEO) constellation",[370] it was to have comprised 7,518 satellites that were to orbit at just 340 km (210 mi) altitude,[371] while the smaller, originally planned group of 4,425 satellites would operate in the Ka- and Ku-bands and orbit at 1,200 km (750 mi) altitude.[370][371] By 2022, SpaceX had withdrawn plans to field the 7,518-satellite V-band system, superseding it with a more comprehensive design for a second-generation (Gen2) Starlink network.[66]
In November 2018, SpaceX received U.S. regulatory approval to deploy 7,518 V-band broadband satellites, in addition to the 4,425 approved earlier;[372][373] however, the V-band plans were subsequently withdrawn by 2022.[66] At the same time, SpaceX also made new regulatory filings with the U.S. FCC to request the ability to alter its previously granted license in order to operate approximately 1,600 of the 4,425 Ka-/Ku-band satellites approved for operation at 1,150 km (710 mi) in a "new lower shell of the constellation" at only 550 km (340 mi)[374] orbital altitude.[339][375] These satellites would effectively operate in a third orbital shell, a 550 km (340 mi) orbit, while the higher and lower orbits at approximately 1,200 km (750 mi) and approximately 340 km (210 mi) would be used only later, once a considerably larger deployment of satellites becomes possible in the later years of the deployment process. The FCC approved the request in April 2019, giving approval to place nearly 12,000 satellites in three orbital shells: initially approximately 1,600 in a 550 km (340 mi) – altitude shell, and subsequently placing approximately 2,800 Ku- and Ka-band spectrum satellites at 1,150 km (710 mi) and approximately 7,500 V-band satellites at 340 km (210 mi).[50] In total, nearly 12,000 satellites were planned to be deployed, with (as of 2019) a possible later extension to 42,000.[376]
In February 2019, a sister company of SpaceX, SpaceX Services Incorporated, filed a request with the FCC to receive a license for the operation of up to a million fixedsatellite Earth stations that would communicate with its non-geostationary orbit (NGSO) satellite Starlink system.[377]
In June 2019, SpaceX applied to the FCC for a license to test up to 270 ground terminals – 70 nationwide across the United States and 200 in Washington state at SpaceX employee homes[378][379] – and aircraft-borne antenna operation from four distributed United States airfields; as well as five ground-to-ground test locations.[380][381]
On October 15, 2019, the United States FCC submitted filings to the International Telecommunication Union (ITU) on SpaceX's behalf to arrange spectrum for 30,000 additional Starlink satellites to supplement the 12,000 Starlink satellites already approved by the FCC.[376] That month, Musk publicly tested the Starlink network by using an Internet connection routed through the network to post a first tweet to social media site Twitter.[382]
^ ab Starlink uses the words "customers", "subscribers", and "people" without providing the definitions
^SpaceX posted the stats twice in December, first reporting 2.2 million "customers" and later 2.3 million "people".[84][85]
Early designs had all phase 1 satellites in altitudes of around 1,100–1,300 km (680–810 mi). SpaceX initially requested to lower the first 1584 satellites, and in April 2020 requested to lower all other higher satellite orbits to about 550 km (340 mi).[388][389] In April 2020, SpaceX modified the architecture of the Starlink network.[390] SpaceX submitted an application to the FCC proposing to operate more satellites in lower orbits in the first phase than the FCC previously authorized. The first phase will still include 1,440 satellites in the first shell orbiting at 550 km (340 mi) in planes inclined 53.0°,[366] with no change to the first shell of the constellation launched largely in 2020.[391] SpaceX also applied in the United States for use of the E-band in their constellation[392] The FCC approved the application in April 2021.[393][394]
On January 24, 2021 SpaceX released a new group of 10 Starlink satellites, the first Starlink satellites in polar orbits. The launch surpassed ISRO's record of launching the most satellites in one mission (143), taking to 1,025 the cumulative number of satellites deployed for Starlink to that date.[395][396]
On February 3, 2022, 49 satellites were launched as Starlink Group 4–7. A G2-ratedgeomagnetic storm occurred on February 4, caused the atmosphere to warm and density at the low deployment altitudes to increase. Predictions were that up to 40 of the 49 satellites might be lost due to drag.[397] After the event, 38 satellites reentered the atmosphere by February 12 while the remaining 11 were able to raise their orbits and avoid loss due to the storm.[398][399]
In March 2023, SpaceX submitted an application to add V-band payload to the second generation satellites rather than fly phase 2 V-band satellites as originally planned and authorized.[400] The request is subject to FCC approval.
This section needs to be updated. The reason given is: Groups 9, 10, and 11 have begun launching but are not yet reflected in these charts.. Please help update this article to reflect recent events or newly available information.(August 2024)
^SpaceX abandoned configuration 2 proposed in the amendment[402]
^The satellites can be deployed -50 km (30 miles) and +70 km (40 miles) (max 580 km; 360 miles) relative to the nominal altitude[403]
^ abcThe FCC limited phase 1 to 7,500 satellites across 3 shells.[403]
With the unknown of when Starship will be able to launch the second generation satellites, SpaceX modified the original V2 blueprint into a smaller, more compact one named "v2 mini". This adjustment allowed Falcon 9 to transport these satellites, though not as many, into orbit.[405] The first set of 21 of these satellites was launched on February 27, 2023. SpaceX committed to reducing debris by keeping the Starlink tension rods, which hold the V2 mini-satellites together, attached to the Falcon 9 second stage. These tension rods were discarded into orbit while launching earlier versions of Starlink satellites.[406][full citation needed] Observations confirm these V2 mini-satellites host two solar panels like the Starship V2 satellites.[407]
The planned large number of satellites has been met with criticism from the astronomical community because of concerns over light pollution.[410][411][412] Astronomers claim that their brightness in both optical and radio wavelengths will severely impact scientific observations. While astronomers can schedule observations to avoid pointing where satellites currently orbit, it is "getting more difficult" as more satellites come online.[413] The International Astronomical Union (IAU), National Radio Astronomy Observatory (NRAO), and Square Kilometre Array Organization (SKAO) have released official statements expressing concern on the matter. Recent studies have proved that the "unintended electromagnetic radiation" affects radio telescopes creating distortions and excessive noise and the IAU Centre for the Protection of the Dark and Quiet Sky from Satellite Constellation Interference was created to manage these new man made obstacles to space exploration.[414][415][416][417]
SpaceX representatives and Musk have claimed that the satellites will have minimal impact, being easily mitigated by pixel masking and image stacking.[419] However, professional astronomers have disputed these claims based on initial observation of the Starlink v0.9 satellites on the first launch, shortly after their deployment from the launch vehicle.[420][421][422][423] In later statements on Twitter, Musk stated that SpaceX will work on reducing the albedo of the satellites and will provide on-demand orientation adjustments for astronomical experiments, if necessary.[424][425] One Starlink satellite (Starlink 1130 / DarkSat) launched with an experimental coating to reduce its albedo. The reduction in g-band magnitude is 0.8 magnitude (55%).[426][427] Despite these measures, astronomers found that the satellites were still too bright, thus making DarkSat essentially a "dead end".[428]
On April 17, 2020, SpaceX wrote in an FCC filing that it would test new methods of mitigating light pollution, and also provide access to satellite tracking data for astronomers to "better coordinate their observations with our satellites".[429][430] On April 27, 2020, Musk announced that the company would introduce a new sunshade designed to reduce the brightness of Starlink satellites.[429] As of 15 October 2020[update], over 200 Starlink satellites had a sunshade. An October 2020 analysis found them to be only marginally fainter than DarkSat.[431] A January 2021 study pinned the brightness at 31% of the original design.[432]
According to a May 2021 study, "A large number of fast-moving transmitting stations (i.e. satellites) will cause further interference. New analysis methods could mitigate some of these effects, but data loss is inevitable, increasing the time needed for each study and limiting the overall amount of science done".[433]
In February 2022, the International Astronomical Union (IAU) established a center to help astronomers deal with the adverse effects of satellite constellations such as Starlink. Work will include the development of software tools for astronomers, advancement of national and international policies, community outreach and work with industry on relevant technologies.[434]
In June 2022, the IAU released a website for astronomers to deal with some adverse effects via satellite tracking. This will enable astronomers to be able to track satellites to be able to avoid and time them for minimal impact on current work.[351]
The first batch of Generation 2 spacecraft was launched in February 2023. These satellites are referred to as "Mini" because they are smaller than the full-sized Gen 2 spacecraft that will come later. SpaceX uses brightness mitigation for Gen 2 that includes a mirror-like surface which reflects sunlight back into space and they orient the solar panels so that observers on the ground only see the dark sides.[357]
The Minis are fainter than Gen 1 spacecraft despite being four times as large according to an observational study published in June 2023. They are 44% as bright as VisorSats, 24% compared to V1.5 and 19% compared to the original design which had no brightness mitigation.[435]: Table 3 Minis appear 12 times brighter before they reach the target orbit.[435]
In October 2023, research published in "Astronomy and Astrophysics Letters" had reportedly found that Starlink satellites were "leaking radio signals" finding that at the site of the future Square Kilometer Array, radio emissions from Starlink satellites were brighter than any natural source in the sky.[436] The paper concluded that these emissions will be "detrimental to key SKA science goals without future mitigation".[437][417]
The large number of satellites employed by Starlink may create the long-term danger of space debris resulting from placing thousands of satellites in orbit and the risk of causing a satellite collision, potentially triggering a cascade phenomenon known as Kessler syndrome.[438][439] SpaceX has said that most of the satellites are launched at a lower altitude, and failed satellites are expected to deorbit within five years without propulsion.[440][441]
Early in the program, a near-miss occurred when SpaceX did not move a satellite that had a 1 in 1,000 chance of colliding with a European one, ten times higher than the ESA's threshold for avoidance maneuvers. SpaceX subsequently fixed an issue with its paging system that had disrupted emails between the ESA and Spacex. The ESA said it plans to invest in technologies to automate satellite collision avoidance maneuvers.[442][443] In 2021, Chinese authorities lodged a complaint with the United Nations, saying their space station had performed evasive maneuvers that year to avoid Starlink satellites.[444] In the document, Chinese delegates said that the continuously maneuvering Starlink satellites posed a risk of collision, and two close encounters with the satellites in July and October constituted dangers to the life or health of astronauts aboard the Chinese Tiangong space station.[445][441]
All these reported issues, plus current plans for the extension of the constellation, motivated a formal letter from the National Telecommunications and Information Administration (NTIA) on behalf of NASA and the NSF, submitted to the FCC on February 8, 2022, warning about the potential impact on low Earth orbit, increased collision risk, impact on science missions, rocket launches, International Space Station and radio frequencies.[446]
SpaceX satellites will maneuver if the probability of collision is greater than 10−5 (1 in 100,000 chance of collision), as opposed to the industry standard of 10−4 (1 in 10,000 chance of collision).[447] SpaceX has budgeted sufficient propellant to accommodate approximately 5,000 propulsive maneuvers over the life of a Gen2 satellite, including a budget of approximately 350 collision avoidance maneuvers per satellite over that time period.[359]
As of May 2022, the average Starlink satellite had conducted fewer than three collision-avoidance maneuvers over the 6 preceding months.[359] Over 1,700 out of 6,873 maneuvers were performed to avoid Kosmos 1408 debris.[447]
In addition to the OneWeb constellation, announced nearly concurrently with the SpaceX constellation, a 2015 proposal from Samsung outlined a 4,600-satellite constellation orbiting at 1,400 km (870 mi) that could provide a zettabyte per month capacity worldwide, an equivalent of 200 gigabytes per month for 5 billion users of Internet data,[448][449] but by 2020, no more public information had been released about the Samsung constellation. Telesat announced a smaller 117 satellite constellation in 2015 with plans to deliver initial service in 2021.[450]Amazon announced a large broadband internet satellite constellation in April 2019, planning to launch 3,236 satellites in the next decade in what the company calls "Project Kuiper", a satellite constellation that will work in concert[451] with Amazon's previously announced large network of twelve satellite ground station facilities (the "AWS ground station unit") announced in November 2018.[452]
In February 2015, financial analysts questioned established geosynchronous orbitcommunications satellite fleet operators as to how they intended to respond to the competitive threat of SpaceX and OneWeb LEO communication satellites.[453] In October 2015, SpaceX President Gwynne Shotwell indicated that while development continues, the business case for the long-term rollout of an operational satellite network was still in an early phase.[454]
By October 2017, the expectation for large increases in satellite network capacity from emerging lower-altitude broadband constellations caused market players to cancel some planned investments in new geosynchronous orbit broadband communications satellites.[455]
SpaceX was challenged regarding Starlink in February 2021 when the National Rural Electric Cooperative Association (NRECA), a political interest group representing traditional rural internet service providers, urged the U.S. Federal Communications Commission (FCC) to "actively, and aggressively, and thoughtfully vet" the subsidy applications of SpaceX and other broadband providers. At the time, SpaceX had provisionally won $886 million for a commitment to provide service to approximately 643,000 locations in 35 states as part of the Rural Digital Opportunity Fund (RDOF).[456] The NRECA criticisms included that the funding allocation to Starlink would include service to locations—such as Harlem and terminals at Newark Liberty International Airport and Miami International Airport—that are not rural, and because SpaceX was planning to build the infrastructure and serve any customers who request service with or without the FCC subsidy.[456] Additionally, Jim Matheson, chief executive officer of the NRECA voiced concern about technologies that had not yet been proven to meet the high speeds required for the award category. Starlink was specifically criticized for being still in beta testing and for unproven technology.[457]
While Starlink is deployed worldwide, it has encountered trademark conflicts in some countries such as Mexico[458] and Ukraine.[459]
Kuiper Systems – a planned 3,276 LEO satellite Internet constellation by an Amazon subsidiary.
Hughes Network Systems – a broadband satellite provider providing fixed, cellular backhaul, and airborne antennas.
Viasat, Inc. – a broadband satellite provider providing fixed, ground mobile, and airborne antennas.
O3b and O3b mPOWER – medium Earth orbit constellations that provide maritime, aviation and military connectivity, and cellular backhaul; coverage between latitudes 50°N and 50°S.
Kuiper Systems – Amazon's large internet satellite constellation
AST SpaceMobile – a satellite-to-mobile-phone satellite constellation working with large mobile network operators such as Vodafone, AT&T, Orange, Rakuten, Telestra, Telefónica, etc. with the objective to provide broadband internet coverage to existing unmodified mobile phones
Orbcomm – an operational constellation used to provide global asset monitoring and messaging services from its constellation of 29 LEO communications satellites orbiting at 775 km (480 miles)
Globalstar – an operational low Earth orbit (LEO) satellite constellation for satellite phone and low-speed data communications, covering most of the world's landmass
Iridium – an operational constellation of 66 cross-linked satellites in a polar orbit, used to provide satellite phone and low-speed data services over the entire surface of Earth
Inmarsat – a satellite based nautical distress network for transmitting telex, fax, and other text messages since 1979 – typically used in nautical scenarios and disaster scenarios
Lynk Global – a satellite-to-mobile-phone satellite constellation with the objective to coverage to traditional low-cost mobile devices
Teledesic – a former (1990s) venture to accomplish broadband satellite internet services
Project Loon – former concept to provide internet access via balloons in the stratosphere
^SpaceX (February 3, 2021). "Petition of Starlink Services, LLC for Designation as an Eligible Telecommunications Carrier"(PDF). Federal Communications Commission. Retrieved March 29, 2024. As the Commission knows, SpaceX assigned its winning RDOF bids to Starlink Services, its wholly-owned subsidiary, on December 22, 2020. An intercompany agreement provides Starlink Services, LLC with access to all space and terrestrial assets and infrastructure needed from SpaceX to deploy and operate the Starlink service.
^ abcdMcDowell, Jonathan (January 3, 2024). "Starlink Launch Statistics". Jonathan's Space Pages. Archived from the original on December 10, 2023. Retrieved January 3, 2023.
^ abBaylor, Michael (May 17, 2018). "With Block 5, SpaceX to increase launch cadence and lower prices". NASASpaceFlight.com. Archived from the original on May 18, 2018. Retrieved May 22, 2018. The system is designed to improve global Internet access by utilizing thousands of satellites in Low Earth orbit. SpaceX President Gwynne Shotwell stated in a TED Talk last month that she expects the constellation to cost at least US$10 billion. Therefore, reducing launch costs will be vital.
^"Types of Broadband Connections". fcc.gov. Federal Communications Commission (FCC). June 23, 2014. Archived from the original on November 17, 2020. Retrieved September 3, 2020. This article incorporates text from this source, which is in the public domain.
^ abcSpaceX Seattle 2015. Cliff O. January 17, 2015. Archived from the original on December 31, 2021. Retrieved February 5, 2022 – via YouTube.
^Foust, Jeff (March 12, 2018). "Musk reiterates plans for testing BFR". SpaceNews. Archived from the original on April 2, 2020. Retrieved March 15, 2018. Construction of the first prototype spaceship is in progress. "We're actually building that ship right now", he said. "I think we'll probably be able to do short flights, short sort of up-and-down flights, probably sometime in the first half of next year".
^ abHenry, Caleb (April 26, 2019). "FCC OKs lower orbit for some Starlink satellites". SpaceNews. Archived from the original on November 17, 2020. Retrieved April 28, 2019. lower the orbit of nearly 1,600 of its proposed broadband satellites. The Federal Communications Commission said 26 April 2019 it was correct with SpaceX changing its plans to orbit those satellites at 550 km (340 mi) instead of 1,150 km (710 mi). SpaceX says the adjustment, requested six months ago, will make a safer space environment, since any defunct satellites at the lower altitude would reenter the Earth's atmosphere in five years even without propulsion. The lower orbit also means more distance between Starlink and competing Internet constellations proposed by OneWeb and Telesat. FCC approval allows satellite companies to provide communications services in the United States. The agency granted SpaceX market access in March 2018 for 4,425 satellites using Ku-band and Ka-band spectrum, and authorized 7,518 V-band satellites in November 2018. SpaceX's modified plans apply to the smaller of the two constellations.
^ abTeam, ESD Editorial (May 30, 2023). "Ukraine's Favourite Dish". euro-sd.com. Archived from the original on September 18, 2023. Retrieved February 14, 2024.
^Space Exploration Holdings, LLC (November 15, 2016). "SAT-LOA-20161115-00118". FCC Space Station Applications. Archived from the original on November 17, 2020. Retrieved February 15, 2018. This article incorporates text from this source, which is in the public domain.
^Alleven, Monica (February 22, 2015). "In 5G proceeding, SpaceX urges FCC to protect future satellite ventures". FierceWirelessTech. Archived from the original on February 26, 2015. Retrieved March 3, 2015. SpaceX pointed out that it recently announced plans to build a network of 4,000 non-geostationary orbit (NGSO) communications satellites, which it will manufacture, launch and operate.
^ abcWiltshire, William M., ed. (November 18, 2018), "Application for Fixed Satellite Service by Space Exploration Holdings, LLC", SAT-MOD-20181108-00083/SATMOD2018110800083, FCC, archived from the original on November 17, 2020, retrieved March 24, 2019, Space Exploration Holdings, LLC seeks to modify its Ku/Ka-band NGSO license to relocate satellites previously authorized to operate at an altitude of 1,150 km (710 mi) to an altitude of 550 km (340 mi), and to make related changes to the operations of the satellites in this new lower shell of the constellation This article incorporates text from this source, which is in the public domain.
^"0517-EX-CN-2019 – Application Question 7: Purpose of Experiment"(PDF). FCC. June 2019. Retrieved July 4, 2019. SpaceX seeks experimental authority for two types of testing: (1) a total of 70 user terminals (mixed between the two types of antennas) so that it can test multiple devices at a number of geographically dispersed locations throughout the United States; and (2) up to 200 phased array user terminals to be deployed within the state of Washington at the homes of SpaceX employees for ongoing testing. Such authority would enable SpaceX to obtain critical data regarding the operational performance of these user terminals and the SpaceX NGSO system. This article incorporates text from this source, which is in the public domain.
^"Application question 7: Purpose of Experiment". FCC. June 2019. Archived from the original on November 17, 2020. Retrieved July 4, 2019. SpaceX seeks an experimental authorization to test activities ... tests are designed to demonstrate the ability to transmit and receive information (1) between five ground sites ("Ground-to-Ground") and (2) between four ground sites and an airborne aircraft ("Ground-to-Air") ... This application seeks only to use an Earth station to transmit signals to the SpaceX satellites first from the ground and later from a moving aircraft. This article incorporates text from this source, which is in the public domain.
^McDowell, Jonathan (August 2, 2022). "Starlink Statistics". Jonathan's Space Pages. Jonathan's Space Report. Archived from the original on August 2, 2022. Retrieved September 17, 2022.
^"Application for Fixed Satellite Service by Space Exploration Holdings, LLC [SAT-MOD-20200417-00037]". fcc.report. FCC. April 17, 2020. Archived from the original on November 17, 2020. Retrieved January 26, 2021. Space Exploration Holdings, LLC seeks to modify its Ku/Ka−band NGSO license to relocate satellites previously authorized to operate at altitudes from 1110 km to 1325 km down to altitudes ranging from 540 km to 570 km, and to make related changes. This article incorporates text from this source, which is in the public domain.
^Mallama, Anthony (2020). "A Flat-Panel Brightness Model for the Starlink Satellites and Measurement of their Absolute Visual Magnitude". arXiv:2003.07805 [astro-ph.IM].
^Grigg, D.; Tingay, S. J.; Sokolowski, M.; Wayth, R. B.; Indermuehle, B.; Prabu, S. (2023). "Detection of intended and unintended emissions from Starlink satellites in the SKA-Low frequency range, at the SKA-Low site, with an SKA-Low station analog". International Centre for Radio Astronomy Research. 678: L6. arXiv:2309.15672. Bibcode:2023A&A...678L...6G. doi:10.1051/0004-6361/202347654. S2CID263152648.