Goyal Prize 2010 for Life Sciences Distinguished Biotechnology Research Professor (DBT) (2009) Distinguished Biotechnologist (DBT) (2006) GN Ramachandran Gold Medal CSIR)
Tej obtained his master's degree in science from the University of Allahabad. He started his research career in 1971 as a graduate student at the Indian Institute of Science, Bangalore. He obtained his Ph.D. degree in the mid-1970s working on the crystal structure determinations and design of anti-inflammatory analgesics for new drug discovery. [1]. Before going for his bachelor's degree in Science in Allahabad University, Tej Pal Singh has studied in his neighbourhood village school i.e. Kisan Intermediate College Deorhi-Wajidpur (District-Amroha UP) and later Government Intermediate College (GIC) in Amroha (UP).
Soon after obtaining his Ph.D. degree, Tej worked for a year as a lecturer at the University of Indore. He then spent more than two years (1978–1980) as an Alexander von Humboldt / Max-Planck, post doctoral fellow in the German laboratory of Professor Robert Huber, who later received the Nobel Prize. After his return to India he worked as a reader at Sardar Patel University (1980–83) and an additional professor (1984–85) in the Department of Biophysics at the All India Institute of Medical Sciences, New Delhi. He was appointed professor and head of the department in 1986 [2][3]
The three-dimensional structures of various proteins including lactoperoxidase,[16]peptidoglycan recognition protein, lactoferrin[17][18][19] from several species, ribosome inactivating proteins,[20] bifunctional inhibitor proteins from plant seeds and various serine proteases and their inhibitors have been determined by his group. The elaborate structural studies of proteins from several important systems as potential drug targets such as phospholipase A2, cyclooxygenase, lipoxygenase, endothelin receptor, endothelin converting enzyme, breast cancer regression proteins and matrix metanosomal proteins as well as their complexes with natural and designed synthetic ligands have been carried out. He had developed the rules of peptide design with alpha, beta – dehydro – amino acids through extensive studies using syntheses, and X-ray and NMR structure determinations. These design rules are being exploited for making specific peptides to act as tight inhibitors of target enzymes and potent antagonists of target receptors for eventually leading to useful therapeutic agents.
He initiated a new programme on Clinical Proteomics at the All India Institute of Medical Sciences in which it is intended to characterize all the proteins that are expressed during various patho/physiological conditions. The newly identified proteins will either be useful as biomarkers or they may be associated with the progression of diseases making them important targets for drug design.
^Singh, Amit Kumar; Singh, Nagendra; Sharma, Sujata; Singh, S. Baskar; Kaur, Punit; Bhushan, A.; Srinivasan, A.; Singh, Tej P. (29 February 2008). "Crystal structure of lactoperoxidase at 2.4 A resolution". Journal of Molecular Biology. 376 (4): 1060–1075. doi:10.1016/j.jmb.2007.12.012. ISSN1089-8638. PMID18191143.
^Sharma, Pradeep; Yamini, Shavait; Dube, Divya; Singh, Amar; Mal, Gorakh; Pandey, Nisha; Sinha, Mau; Singh, Abhay Kumar; Dey, Sharmistha (1 January 2013). "Structural basis of the binding of fatty acids to peptidoglycan recognition protein, PGRP-S through second binding site". Archives of Biochemistry and Biophysics. 529 (1): 1–10. doi:10.1016/j.abb.2012.11.001. ISSN1096-0384. PMID23149273.
^Singh, Avinash; Kumar, Ashok; Gautam, Lovely; Sharma, Pradeep; Sinha, Mau; Bhushan, Asha; Kaur, Punit; Sharma, Sujata; Arora, Ashish (1 November 2014). "Structural and binding studies of peptidyl-tRNA hydrolase from Pseudomonas aeruginosa provide a platform for the structure-based inhibitor design against peptidyl-tRNA hydrolase". The Biochemical Journal. 463 (3): 329–337. doi:10.1042/BJ20140631. ISSN1470-8728. PMID25101795.
^Shukla, Prakash Kumar; Gautam, Lovely; Sinha, Mau; Kaur, Punit; Sharma, Sujata; Singh, Tej P. (1 April 2015). "Structures and binding studies of the complexes of phospholipase A2 with five inhibitors". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1854 (4): 269–277. doi:10.1016/j.bbapap.2014.12.017. ISSN0006-3002. PMID25541253.
^Bilgrami, Sameeta; Yadav, Savita; Kaur, Punit; Sharma, Sujata; Perbandt, Markus; Betzel, Christian; Singh, Tej P. (23 August 2005). "Crystal structure of the disintegrin heterodimer from saw-scaled viper (Echis carinatus) at 1.9 A resolution". Biochemistry. 44 (33): 11058–11066. doi:10.1021/bi050849y. ISSN0006-2960. PMID16101289.
^Mir, Rafia; Singh, Nagendra; Vikram, Gopalakrishnapillai; Sinha, Mau; Bhushan, Asha; Kaur, Punit; Srinivasan, Alagiri; Sharma, Sujata; Singh, Tej P. (15 August 2010). "Structural and binding studies of C-terminal half (C-lobe) of lactoferrin protein with COX-2-specific non-steroidal anti-inflammatory drugs (NSAIDs)". Archives of Biochemistry and Biophysics. 500 (2): 196–202. doi:10.1016/j.abb.2010.05.026. ISSN1096-0384. PMID20515646.
^Kushwaha, G.S.; Pandey, N.; Sinha, M.; Singh, S.B.; Kaur, P.; Sharma, S.; Singh, T.P. (April 2012). "Crystal structures of a type-1 ribosome inactivating protein from Momordica balsamina in the bound and unbound states". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1824 (4): 679–91. doi:10.1016/j.bbapap.2012.02.005. PMID22361570.