As a first example, note that the K-theory of a point is the integers. This is because vector bundles over a point are trivial and thus classified by their rank and the Grothendieck group of the natural numbers is the integers.
There is also a reduced version of K-theory, , defined for X a compact pointed space (cf. reduced homology). This reduced theory is intuitively K(X) modulo trivial bundles. It is defined as the group of stable equivalence classes of bundles. Two bundles E and F are said to be stably isomorphic if there are trivial bundles and , so that . This equivalence relation results in a group since every vector bundle can be completed to a trivial bundle by summing with its orthogonal complement. Alternatively, can be defined as the kernel of the map induced by the inclusion of the base point x0 into X.
The spectrum of K-theory is (with the discrete topology on ), i.e. where [ , ] denotes pointed homotopy classes and BU is the colimit of the classifying spaces of the unitary groups: Similarly, For real K-theory use BO.
The equivalent of the Steenrod operations in K-theory are the Adams operations. They can be used to define characteristic classes in topological K-theory.
The Splitting principle of topological K-theory allows one to reduce statements about arbitrary vector bundles to statements about sums of line bundles.
The Thom isomorphism theorem in topological K-theory is where T(E) is the Thom space of the vector bundle E over X. This holds whenever E is a spin-bundle.
Michael Atiyah and Friedrich Hirzebruch proved a theorem relating the topological K-theory of a finite CW complex with its rational cohomology. In particular, they showed that there exists a homomorphism
such that
There is an algebraic analogue relating the Grothendieck group of coherent sheaves and the Chow ring of a smooth projective variety .