Sequence of polynomials
For a different family of polynomials Q
n occasionally called Touchard polynomials, see
Bateman polynomials .
The Touchard polynomials , studied by Jacques Touchard (1939 ), also called the exponential polynomials or Bell polynomials , comprise a polynomial sequence of binomial type defined by
T
n
(
x
)
=
∑
k
=
0
n
S
(
n
,
k
)
x
k
=
∑
k
=
0
n
{
n
k
}
x
k
,
{\displaystyle T_{n}(x)=\sum _{k=0}^{n}S(n,k)x^{k}=\sum _{k=0}^{n}\left\{{n \atop k}\right\}x^{k},}
where
S
(
n
,
k
)
=
{
n
k
}
{\displaystyle S(n,k)=\left\{{n \atop k}\right\}}
is a Stirling number of the second kind , i.e., the number of partitions of a set of size n into k disjoint non-empty subsets.[ 1] [ 2] [ 3] [ 4]
The first few Touchard polynomials are
T
1
(
x
)
=
x
,
{\displaystyle T_{1}(x)=x,}
T
2
(
x
)
=
x
2
+
x
,
{\displaystyle T_{2}(x)=x^{2}+x,}
T
3
(
x
)
=
x
3
+
3
x
2
+
x
,
{\displaystyle T_{3}(x)=x^{3}+3x^{2}+x,}
T
4
(
x
)
=
x
4
+
6
x
3
+
7
x
2
+
x
,
{\displaystyle T_{4}(x)=x^{4}+6x^{3}+7x^{2}+x,}
T
5
(
x
)
=
x
5
+
10
x
4
+
25
x
3
+
15
x
2
+
x
.
{\displaystyle T_{5}(x)=x^{5}+10x^{4}+25x^{3}+15x^{2}+x.}
The value at 1 of the n th Touchard polynomial is the n th Bell number , i.e., the number of partitions of a set of size n :
T
n
(
1
)
=
B
n
.
{\displaystyle T_{n}(1)=B_{n}.}
If X is a random variable with a Poisson distribution with expected value λ, then its n th moment is E(X n ) = T n (λ), leading to the definition:
T
n
(
x
)
=
e
−
x
∑
k
=
0
∞
x
k
k
n
k
!
.
{\displaystyle T_{n}(x)=e^{-x}\sum _{k=0}^{\infty }{\frac {x^{k}k^{n}}{k!}}.}
Using this fact one can quickly prove that this polynomial sequence is of binomial type , i.e., it satisfies the sequence of identities:
T
n
(
λ
+
μ
)
=
∑
k
=
0
n
(
n
k
)
T
k
(
λ
)
T
n
−
k
(
μ
)
.
{\displaystyle T_{n}(\lambda +\mu )=\sum _{k=0}^{n}{n \choose k}T_{k}(\lambda )T_{n-k}(\mu ).}
The Touchard polynomials constitute the only polynomial sequence of binomial type with the coefficient of x equal 1 in every polynomial.
The Touchard polynomials satisfy the Rodrigues-like formula:
T
n
(
e
x
)
=
e
−
e
x
d
n
d
x
n
e
e
x
.
{\displaystyle T_{n}\left(e^{x}\right)=e^{-e^{x}}{\frac {d^{n}}{dx^{n}}}\;e^{e^{x}}.}
The Touchard polynomials satisfy the recurrence relation
T
n
+
1
(
x
)
=
x
(
1
+
d
d
x
)
T
n
(
x
)
{\displaystyle T_{n+1}(x)=x\left(1+{\frac {d}{dx}}\right)T_{n}(x)}
and
T
n
+
1
(
x
)
=
x
∑
k
=
0
n
(
n
k
)
T
k
(
x
)
.
{\displaystyle T_{n+1}(x)=x\sum _{k=0}^{n}{n \choose k}T_{k}(x).}
In the case x = 1, this reduces to the recurrence formula for the Bell numbers .
A generalization of both this formula and the definition, is a generalization of Spivey's formula[ 5]
T
n
+
m
(
x
)
=
∑
k
=
0
n
{
n
k
}
x
k
∑
j
=
0
m
(
m
j
)
k
m
−
j
T
j
(
x
)
{\displaystyle T_{n+m}(x)=\sum _{k=0}^{n}\left\{{n \atop k}\right\}x^{k}\sum _{j=0}^{m}{\binom {m}{j}}k^{m-j}T_{j}(x)}
Using the umbral notation T n (x )=T n (x ), these formulas become:
T
n
(
λ
+
μ
)
=
(
T
(
λ
)
+
T
(
μ
)
)
n
,
{\displaystyle T_{n}(\lambda +\mu )=\left(T(\lambda )+T(\mu )\right)^{n},}
[clarification needed ]
T
n
+
1
(
x
)
=
x
(
1
+
T
(
x
)
)
n
.
{\displaystyle T_{n+1}(x)=x\left(1+T(x)\right)^{n}.}
The generating function of the Touchard polynomials is
∑
n
=
0
∞
T
n
(
x
)
n
!
t
n
=
e
x
(
e
t
−
1
)
,
{\displaystyle \sum _{n=0}^{\infty }{T_{n}(x) \over n!}t^{n}=e^{x\left(e^{t}-1\right)},}
which corresponds to the generating function of Stirling numbers of the second kind .
Touchard polynomials have contour integral representation:
T
n
(
x
)
=
n
!
2
π
i
∮
e
x
(
e
t
−
1
)
t
n
+
1
d
t
.
{\displaystyle T_{n}(x)={\frac {n!}{2\pi i}}\oint {\frac {e^{x({e^{t}}-1)}}{t^{n+1}}}\,dt.}
All zeroes of the Touchard polynomials are real and negative. This fact was observed by L. H. Harper in 1967.[ 6]
The absolute value of the leftmost zero is bounded from above by[ 7]
1
n
(
n
2
)
+
n
−
1
n
(
n
2
)
2
−
2
n
n
−
1
(
(
n
3
)
+
3
(
n
4
)
)
,
{\displaystyle {\frac {1}{n}}{\binom {n}{2}}+{\frac {n-1}{n}}{\sqrt {{\binom {n}{2}}^{2}-{\frac {2n}{n-1}}\left({\binom {n}{3}}+3{\binom {n}{4}}\right)}},}
although it is conjectured that the leftmost zero grows linearly with the index n .
The Mahler measure
M
(
T
n
)
{\displaystyle M(T_{n})}
of the Touchard polynomials can be estimated as follows:[ 8]
{
n
Ω
n
}
(
n
Ω
n
)
≤
M
(
T
n
)
≤
n
+
1
{
n
K
n
}
,
{\displaystyle {\frac {\lbrace \textstyle {n \atop \Omega _{n}}\rbrace }{\binom {n}{\Omega _{n}}}}\leq M(T_{n})\leq {\sqrt {n+1}}\left\{{n \atop K_{n}}\right\},}
where
Ω
n
{\displaystyle \Omega _{n}}
and
K
n
{\displaystyle K_{n}}
are the smallest of the maximum two k indices such that
{
n
k
}
/
(
n
k
)
{\displaystyle \lbrace \textstyle {n \atop k}\rbrace /{\binom {n}{k}}}
and
{
n
k
}
{\displaystyle \lbrace \textstyle {n \atop k}\rbrace }
are maximal, respectively.
Complete Bell polynomial
B
n
(
x
1
,
x
2
,
…
,
x
n
)
{\displaystyle B_{n}(x_{1},x_{2},\dots ,x_{n})}
may be viewed as a multivariate generalization of Touchard polynomial
T
n
(
x
)
{\displaystyle T_{n}(x)}
, since
T
n
(
x
)
=
B
n
(
x
,
x
,
…
,
x
)
.
{\displaystyle T_{n}(x)=B_{n}(x,x,\dots ,x).}
The Touchard polynomials (and thereby the Bell numbers ) can be generalized, using the real part of the above integral, to non-integer order:
T
n
(
x
)
=
n
!
π
∫
0
π
e
x
(
e
cos
(
θ
)
cos
(
sin
(
θ
)
)
−
1
)
cos
(
x
e
cos
(
θ
)
sin
(
sin
(
θ
)
)
−
n
θ
)
d
θ
.
{\displaystyle T_{n}(x)={\frac {n!}{\pi }}\int _{0}^{\pi }e^{x{\bigl (}e^{\cos(\theta )}\cos(\sin(\theta ))-1{\bigr )}}\cos {\bigl (}xe^{\cos(\theta )}\sin(\sin(\theta ))-n\theta {\bigr )}\,d\theta \,.}
^ Roman, Steven (1984). The Umbral Calculus . Dover. ISBN 0-486-44139-3 .
^ Boyadzhiev, Khristo N. (2009). "Exponential polynomials, Stirling numbers, and evaluation of some gamma integrals" . Abstract and Applied Analysis . 2009 : 1–18. arXiv :0909.0979 . Bibcode :2009AbApA2009....1B . doi :10.1155/2009/168672 .
^ Brendt, Bruce C. "RAMANUJAN REACHES HIS HAND FROM HIS GRAVE TO SNATCH YOUR THEOREMS FROM YOU" (PDF) . Retrieved 23 November 2013 .
^ Weisstein, Eric W. "Bell Polynomial" . MathWorld .
^ "Implications of Spivey's Bell Number Formula" . cs.uwaterloo.ca . Retrieved 2023-05-28 .
^ Harper, L. H. (1967). "Stirling behavior is asymptotically normal" . The Annals of Mathematical Statistics . 38 (2): 410–414. doi :10.1214/aoms/1177698956 .
^ Mező, István; Corcino, Roberto B. (2015). "The estimation of the zeros of the Bell and r-Bell polynomials". Applied Mathematics and Computation . 250 : 727–732. doi :10.1016/j.amc.2014.10.058 .
^ István, Mező. "On the Mahler measure of the Bell polynomials" . Retrieved 7 November 2017 .