Phthisis, phthisis pulmonalis, consumption, great white plague
Chest X-ray of a person with advanced tuberculosis: Infection in both lungs is marked by white arrow-heads, and the formation of a cavity is marked by black arrows.
Tuberculosis (TB), also known colloquially as the "white death", or historically as consumption,[8] is an infectious disease usually caused by Mycobacterium tuberculosis (MTB) bacteria.[1] Tuberculosis generally affects the lungs, but it can also affect other parts of the body.[1] Most infections show no symptoms, in which case it is known as latent tuberculosis.[1] Around 10% of latent infections progress to active disease that, if left untreated, kill about half of those affected.[1] Typical symptoms of active TB are chronic cough with blood-containingmucus, fever, night sweats, and weight loss.[1]Infection of other organs can cause a wide range of symptoms.[9]
In 2018, one quarter of the world's population was thought to have a latent infection of TB.[6] New infections occur in about 1% of the population each year.[12] In 2022, an estimated 10.6 million people developed active TB, resulting in 1.3 million deaths, making it the second leading cause of death from an infectious disease after COVID-19.[7] As of 2018, most TB cases occurred in the WHO regions of South-East Asia (44%), Africa (24%), and the Western Pacific (18%), with more than 50% of cases being diagnosed in seven countries: India (27%), China (9%), Indonesia (8%), the Philippines (6%), Pakistan (6%), Nigeria (4%), and Bangladesh (4%).[13] By 2021, the number of new cases each year was decreasing by around 2% annually.[7][1] About 80% of people in many Asian and African countries test positive, while 5–10% of people in the United States test positive via the tuberculin test.[14] Tuberculosis has been present in humans since ancient times.[15]
Tuberculosis has existed since antiquity.[15] The oldest unambiguously detected M. tuberculosis gives evidence of the disease in the remains of bison in Wyoming dated to around 17,000 years ago.[16] However, whether tuberculosis originated in bovines, then transferred to humans, or whether both bovine and human tuberculosis diverged from a common ancestor, remains unclear.[17] A comparison of the genes of M. tuberculosis complex (MTBC) in humans to MTBC in animals suggests humans did not acquire MTBC from animals during animal domestication, as researchers previously believed. Both strains of the tuberculosis bacteria share a common ancestor, which could have infected humans even before the Neolithic Revolution.[18] Skeletal remains show some prehistoric humans (4000 BC) had TB, and researchers have found tubercular decay in the spines of Egyptianmummies dating from 3000 to 2400 BC.[19] Genetic studies suggest the presence of TB in the Americas from about AD 100.[20]
Before the Industrial Revolution, folklore often associated tuberculosis with vampires. When one member of a family died from the disease, the other infected members would lose their health slowly. People believed this was caused by the original person with TB draining the life from the other family members.[21]
Although Richard Morton established the pulmonary form associated with tubercles as a pathology in 1689,[22][23] due to the variety of its symptoms, TB was not identified as a single disease until the 1820s. Benjamin Marten conjectured in 1720 that consumptions were caused by microbes which were spread by people living close to each other.[24] In 1819, René Laennec claimed that tubercles were the cause of pulmonary tuberculosis.[25]J. L. Schönlein first published the name "tuberculosis" (German: Tuberkulose) in 1832.[26][27]
Between 1838 and 1845, John Croghan, the owner of Mammoth Cave in Kentucky from 1839 onwards, brought a number of people with tuberculosis into the cave in the hope of curing the disease with the constant temperature and purity of the cave air; each died within a year.[28] Hermann Brehmer opened the first TB sanatorium in 1859 in Görbersdorf (now Sokołowsko) in Silesia.[29] In 1865, Jean Antoine Villemin demonstrated that tuberculosis could be transmitted, via inoculation, from humans to animals and among animals.[30] (Villemin's findings were confirmed in 1867 and 1868 by John Burdon-Sanderson.[31])
In Europe, rates of tuberculosis began to rise in the early 1600s to a peak level in the 1800s, when it caused nearly 25% of all deaths.[35] In the 18th and 19th century, tuberculosis had become epidemic in Europe, showing a seasonal pattern.[36][37] Tuberculosis caused widespread public concern in the 19th and early 20th centuries as the disease became common among the urban poor. In 1815, one in four deaths in England was due to "consumption". By 1918, TB still caused one in six deaths in France.[citation needed]
After TB was determined to be contagious, in the 1880s, it was put on a notifiable-disease list in Britain. Campaigns started to stop people from spitting in public places, and the infected poor were "encouraged" to enter sanatoria that resembled prisons. The sanatoria for the middle and upper classes offered excellent care and constant medical attention.[29] What later became known as the Alexandra Hospital for Children with Hip Disease (tuberculous arthritis) was opened in London in 1867.[38] Whatever the benefits of the "fresh air" and labor in the sanatoria, even under the best conditions, 50% of those who entered died within five years (c. 1916).[29]
Robert Koch did not believe the cattle and human tuberculosis diseases were similar, which delayed the recognition of infected milk as a source of infection. During the first half of the 1900s, the risk of transmission from this source was dramatically reduced after the application of the pasteurization process. Koch announced a glycerine extract of the tubercle bacilli as a "remedy" for tuberculosis in 1890, calling it "tuberculin". Although it was not effective, it was later successfully adapted as a screening test for the presence of pre-symptomatic tuberculosis.[39]World Tuberculosis Day is marked on 24 March each year, the anniversary of Koch's original scientific announcement. When the Medical Research Council formed in Britain in 1913, it initially focused on tuberculosis research.[40]
Albert Calmette and Camille Guérin achieved the first genuine success in immunization against tuberculosis in 1906, using attenuated bovine-strain tuberculosis. It was called bacille Calmette–Guérin (BCG). The BCG vaccine was first used on humans in 1921 in France,[41] but achieved widespread acceptance in the US, Great Britain, and Germany only after World War II.[42]
By the 1950s mortality in Europe had decreased about 90%.[43] Improvements in sanitation, vaccination, and other public-health measures began significantly reducing rates of tuberculosis even before the arrival of streptomycin and other antibiotics, although the disease remained a significant threat.[43] In 1946, the development of the antibiotic streptomycin made effective treatment and cure of TB a reality. Prior to the introduction of this medication, the only treatment was surgical intervention, including the "pneumothorax technique", which involved collapsing an infected lung to "rest" it and to allow tuberculous lesions to heal.[44]
Because of the emergence of multidrug-resistant tuberculosis (MDR-TB), surgery has been re-introduced for certain cases of TB infections. It involves the removal of infected chest cavities ("bullae") in the lungs to reduce the number of bacteria and to increase exposure of the remaining bacteria to antibiotics in the bloodstream.[45] Hopes of eliminating TB ended with the rise of drug-resistant strains in the 1980s. The subsequent resurgence of tuberculosis resulted in the declaration of a global health emergency by the World Health Organization (WHO) in 1993.[46]
There is a popular misconception that tuberculosis is purely a disease of the lungs that manifests as coughing.[48] Tuberculosis may infect many organs, even though it most commonly occurs in the lungs (known as pulmonary tuberculosis).[9] Extrapulmonary TB occurs when tuberculosis develops outside of the lungs, although extrapulmonary TB may coexist with pulmonary TB.[9]
If a tuberculosis infection does become active, it most commonly involves the lungs (in about 90% of cases).[15][50] Symptoms may include chest pain and a prolonged cough producing sputum. About 25% of people may not have any symptoms (i.e., they remain asymptomatic).[15] Occasionally, people may cough up blood in small amounts, and in very rare cases, the infection may erode into the pulmonary artery or a Rasmussen aneurysm, resulting in massive bleeding.[9][51] Tuberculosis may become a chronic illness and cause extensive scarring in the upper lobes of the lungs. The upper lung lobes are more frequently affected by tuberculosis than the lower ones.[9] The reason for this difference is not clear.[14] It may be due to either better air flow,[14] or poor lymph drainage within the upper lungs.[9]
In 15–20% of active cases, the infection spreads outside the lungs, causing other kinds of TB.[52] These are collectively denoted as extrapulmonary tuberculosis.[53] Extrapulmonary TB occurs more commonly in people with a weakened immune system and young children. In those with HIV, this occurs in more than 50% of cases.[53] Notable extrapulmonary infection sites include the pleura (in tuberculous pleurisy), the central nervous system (in tuberculous meningitis), the lymphatic system (in scrofula of the neck), the genitourinary system (in urogenital tuberculosis), and the bones and joints (in Pott disease of the spine), among others. A potentially more serious, widespread form of TB is called "disseminated tuberculosis"; it is also known as miliary tuberculosis.[9] Miliary TB currently makes up about 10% of extrapulmonary cases.[54]
The main cause of TB is Mycobacterium tuberculosis (MTB), a small, aerobic, nonmotile bacillus.[9] The high lipid content of this pathogen accounts for many of its unique clinical characteristics.[55] It divides every 16 to 20 hours, which is an extremely slow rate compared with other bacteria, which usually divide in less than an hour.[56] Mycobacteria have an outer membrane lipid bilayer.[57] If a Gram stain is performed, MTB either stains very weakly "Gram-positive" or does not retain dye as a result of the high lipid and mycolic acid content of its cell wall.[58] MTB can withstand weak disinfectants and survive in a dry state for weeks. In nature, the bacterium can grow only within the cells of a host organism, but M. tuberculosis can be cultured in the laboratory.[59]
The M. tuberculosis complex (MTBC) includes four other TB-causing mycobacteria: M. bovis, M. africanum, M. canettii, and M. microti.[64]M. africanum is not widespread, but it is a significant cause of tuberculosis in parts of Africa.[65][66]M. bovis was once a common cause of tuberculosis, but the introduction of pasteurized milk has almost eliminated this as a public health problem in developed countries.[14][67]M. canettii is rare and seems to be limited to the Horn of Africa, although a few cases have been seen in African emigrants.[68][69]M. microti is also rare and is seen almost only in immunodeficient people, although its prevalence may be significantly underestimated.[70]
Other known pathogenic mycobacteria include M. leprae, M. avium, and M. kansasii. The latter two species are classified as "nontuberculous mycobacteria" (NTM) or atypical mycobacteria. NTM cause neither TB nor leprosy, but they do cause lung diseases that resemble TB.[71]
When people with active pulmonary TB cough, sneeze, speak, sing, or spit, they expel infectious aerosol droplets 0.5 to 5.0 μm in diameter. A single sneeze can release up to 40,000 droplets.[72] Each one of these droplets may transmit the disease, since the infectious dose of tuberculosis is very small (the inhalation of fewer than 10 bacteria may cause an infection).[73]
People with prolonged, frequent, or close contact with people with TB are at particularly high risk of becoming infected, with an estimated 22% infection rate.[74] A person with active but untreated tuberculosis may infect 10–15 (or more) other people per year.[75] Transmission should occur from only people with active TB – those with latent infection are not thought to be contagious.[14] The probability of transmission from one person to another depends upon several factors, including the number of infectious droplets expelled by the carrier, the effectiveness of ventilation, the duration of exposure, the virulence of the M. tuberculosisstrain, the level of immunity in the uninfected person, and others.[76]
The cascade of person-to-person spread can be circumvented by segregating those with active ("overt") TB and putting them on anti-TB drug regimens. After about two weeks of effective treatment, subjects with nonresistant active infections generally do not remain contagious to others.[74] If someone does become infected, it typically takes three to four weeks before the newly infected person becomes infectious enough to transmit the disease to others.[77]
The most important risk factor globally for developing active TB is concurrent HIV infection; 13% of those with TB are also infected with HIV.[79] This is a particular problem in sub-Saharan Africa, where HIV infection rates are high.[80][81] Of those without HIV infection who are infected with tuberculosis, about 5–10% develop active disease during their lifetimes;[49] in contrast, 30% of those co-infected with HIV develop the active disease.[49]
Tobacco smoking increases the risk of infections (in addition to increasing the risk of active disease and death). Additional factors increasing infection susceptibility include young age.[78]
About 90% of those infected with M. tuberculosis have asymptomatic, latent TB infections (sometimes called LTBI),[88] with only a 10% lifetime chance that the latent infection will progress to overt, active tuberculous disease.[89] In those with HIV, the risk of developing active TB increases to nearly 10% a year.[89] If effective treatment is not given, the death rate for active TB cases is up to 66%.[75]
TB infection begins when the mycobacteria reach the alveolar air sacs of the lungs, where they invade and replicate within endosomes of alveolar macrophages.[14][90][91] Macrophages identify the bacterium as foreign and attempt to eliminate it by phagocytosis. During this process, the bacterium is enveloped by the macrophage and stored temporarily in a membrane-bound vesicle called a phagosome. The phagosome then combines with a lysosome to create a phagolysosome. In the phagolysosome, the cell attempts to use reactive oxygen species and acid to kill the bacterium. However, M. tuberculosis has a thick, waxy mycolic acid capsule that protects it from these toxic substances. M. tuberculosis is able to reproduce inside the macrophage and will eventually kill the immune cell.
The primary site of infection in the lungs, known as the Ghon focus, is generally located in either the upper part of the lower lobe, or the lower part of the upper lobe.[14] Tuberculosis of the lungs may also occur via infection from the blood stream. This is known as a Simon focus and is typically found in the top of the lung.[92] This hematogenous transmission can also spread infection to more distant sites, such as peripheral lymph nodes, the kidneys, the brain, and the bones.[14][93] All parts of the body can be affected by the disease, though for unknown reasons it rarely affects the heart, skeletal muscles, pancreas, or thyroid.[94]
Tuberculosis is classified as one of the granulomatous inflammatory diseases. Macrophages, epithelioid cells, T lymphocytes, B lymphocytes, and fibroblasts aggregate to form granulomas, with lymphocytes surrounding the infected macrophages. When other macrophages attack the infected macrophage, they fuse together to form a giant multinucleated cell in the alveolar lumen. The granuloma may prevent dissemination of the mycobacteria and provide a local environment for interaction of cells of the immune system.[95]
However, more recent evidence suggests that the bacteria use the granulomas to avoid destruction by the host's immune system. Macrophages and dendritic cells in the granulomas are unable to present antigen to lymphocytes; thus the immune response is suppressed.[96] Bacteria inside the granuloma can become dormant, resulting in latent infection. Another feature of the granulomas is the development of abnormal cell death (necrosis) in the center of tubercles. To the naked eye, this has the texture of soft, white cheese and is termed caseous necrosis.[95]
If TB bacteria gain entry to the blood stream from an area of damaged tissue, they can spread throughout the body and set up many foci of infection, all appearing as tiny, white tubercles in the tissues.[97] This severe form of TB disease, most common in young children and those with HIV, is called miliary tuberculosis.[98] People with this disseminated TB have a high fatality rate even with treatment (about 30%).[54][99]
In many people, the infection waxes and wanes. Tissue destruction and necrosis are often balanced by healing and fibrosis.[95] Affected tissue is replaced by scarring and cavities filled with caseous necrotic material. During active disease, some of these cavities are joined to the air passages (bronchi) and this material can be coughed up. It contains living bacteria and thus can spread the infection. Treatment with appropriate antibiotics kills bacteria and allows healing to take place. Upon cure, affected areas are eventually replaced by scar tissue.[95]
Diagnosing active tuberculosis based only on signs and symptoms is difficult,[100] as is diagnosing the disease in those who have a weakened immune system.[101] A diagnosis of TB should, however, be considered in those with signs of lung disease or constitutional symptoms lasting longer than two weeks.[101] A chest X-ray and multiple sputum cultures for acid-fast bacilli are typically part of the initial evaluation.[101]Interferon-γ release assays (IGRA) and tuberculin skin tests are of little use in most of the developing world.[102][103] IGRA have similar limitations in those with HIV.[103][104]
A definitive diagnosis of TB is made by identifying M. tuberculosis in a clinical sample (e.g., sputum, pus, or a tissuebiopsy). However, the difficult culture process for this slow-growing organism can take two to six weeks for blood or sputum culture.[105] Thus, treatment is often begun before cultures are confirmed.[106]
The Mantoux tuberculin skin test is often used to screen people at high risk for TB.[101] Those who have been previously immunized with the Bacille Calmette-Guerin vaccine may have a false-positive test result.[108] The test may be falsely negative in those with sarcoidosis, Hodgkin's lymphoma, malnutrition, and most notably, active tuberculosis.[14]Interferon gamma release assays, on a blood sample, are recommended in those who are positive to the Mantoux test.[106] These are not affected by immunization or most environmental mycobacteria, so they generate fewer false-positive results.[109] However, they are affected by M. szulgai, M. marinum, and M. kansasii.[110] IGRAs may increase sensitivity when used in addition to the skin test, but may be less sensitive than the skin test when used alone.[111]
Tuberculosis prevention and control efforts rely primarily on the vaccination of infants and the detection and appropriate treatment of active cases.[15] The World Health Organization (WHO) has achieved some success with improved treatment regimens, and a small decrease in case numbers.[15] Some countries have legislation to involuntarily detain or examine those suspected to have tuberculosis, or involuntarily treat them if infected.[115]
It is the most widely used vaccine worldwide, with more than 90% of all children being vaccinated.[15] The immunity it induces decreases after about ten years.[15] As tuberculosis is uncommon in most of Canada, Western Europe, and the United States, BCG is administered to only those people at high risk.[120][121][122] Part of the reasoning against the use of the vaccine is that it makes the tuberculin skin test falsely positive, reducing the test's usefulness as a screening tool.[122] Several vaccines are being developed.[15]
Intradermal MVA85A vaccine in addition to BCG injection is not effective in preventing tuberculosis.[123]
Public health campaigns which have focused on overcrowding, public spitting and regular sanitation (including hand washing) during the 1800s helped to either interrupt or slow spread which when combined with contact tracing, isolation and treatment helped to dramatically curb the transmission of both tuberculosis and other airborne diseases which led to the elimination of tuberculosis as a major public health issue in most developed economies.[124][125] Other risk factors which worsened TB spread such as malnutrition were also ameliorated, but since the emergence of HIV a new population of immunocompromised individuals was available for TB to infect.
During the HIV/AIDS epidemic in the US, up to 35% of those affected by TB were also infected by HIV.[126] Handling of TB-infected patients in US hospitals was known to create airborne TB that could infect others, especially in unventilated spaces.[127]
Multiple US agencies rolled out new public health rules as a result of the TB spread: the CDC brought in new guidelines mandating HEPA filters and HEPA respirators,[128]NIOSH pushed through new 42 CFR 84 respirator regulations in 1995 (like the N95),[129] and OSHA created a proposed rule for TB in 1997, a result of pressure from groups like the Labor Coalition to Fight TB in the Workplace.[130][131]
However, in 2003, OSHA dropped their proposed TB rules, citing a decline of TB in the US, and public disapproval.[132]
The World Health Organization (WHO) declared TB a "global health emergency" in 1993,[15] and in 2006, the Stop TB Partnership developed a Global Plan to Stop Tuberculosis that aimed to save 14 million lives between its launch and 2015.[133] A number of targets they set were not achieved by 2015, mostly due to the increase in HIV-associated tuberculosis and the emergence of multiple drug-resistant tuberculosis.[15] A tuberculosis classification system developed by the American Thoracic Society is used primarily in public health programs.[134] In 2015, it launched the End TB Strategy to reduce deaths by 95% and incidence by 90% before 2035. The goal of tuberculosis elimination is being hampered by the lack of rapid testing, short and effective treatment courses, and completely effective vaccines.[135]
The benefits and risks of giving anti-tubercular drugs to those exposed to MDR-TB is unclear.[136] Making HAART therapy available to HIV-positive individuals significantly reduces the risk of progression to an active TB infection by up to 90% and can mitigate the spread through this population.[137]
Treatment of TB uses antibiotics to kill the bacteria. Effective TB treatment is difficult, due to the unusual structure and chemical composition of the mycobacterial cell wall, which hinders the entry of drugs and makes many antibiotics ineffective.[138]
Active TB is best treated with combinations of several antibiotics to reduce the risk of the bacteria developing antibiotic resistance.[15] The routine use of rifabutin instead of rifampicin in HIV-positive people with tuberculosis is of unclear benefit as of 2007[update].[139]
Acetylsalicylic acid (aspirin) at a dose of 100 mg per day has been shown to improve clinical signs and symptoms, reduce cavitary lesions, lower inflammatory markers, and increase the rate of sputum-negative conversion in patients with pulmonary tuberculosis.[140]
Latent TB is treated with either isoniazid or rifampin alone, or a combination of isoniazid with either rifampicin or rifapentine.[141][142][143]
The treatment takes three to nine months depending on the medications used.[76][141][144][143] People with latent infections are treated to prevent them from progressing to active TB disease later in life.[145]
Education or counselling may improve the latent tuberculosis treatment completion rates.[146]
The recommended treatment of new-onset pulmonary tuberculosis, as of 2010[update], is six months of a combination of antibiotics containing rifampicin, isoniazid, pyrazinamide, and ethambutol for the first two months, and only rifampicin and isoniazid for the last four months.[15] Where resistance to isoniazid is high, ethambutol may be added for the last four months as an alternative.[15] Treatment with anti-TB drugs for at least 6 months results in higher success rates when compared with treatment less than 6 months, even though the difference is small. Shorter treatment regimen may be recommended for those with compliance issues.[147] There is also no evidence to support shorter anti-tuberculosis treatment regimens when compared to a 6-month treatment regimen.[148] However, results presented in 2020 from an international, randomized, controlled clinical trial indicate that a four-month daily treatment regimen containing high-dose, or "optimized", rifapentine with moxifloxacin (2PHZM/2PHM) is as safe and effective as the existing standard six-month daily regimen at curing drug-susceptible tuberculosis (TB) disease.[149]
If tuberculosis recurs, testing to determine which antibiotics it is sensitive to is important before determining treatment.[15] If multiple drug-resistant TB (MDR-TB) is detected, treatment with at least four effective antibiotics for 18 to 24 months is recommended.[15]
Directly observed therapy, i.e., having a health care provider watch the person take their medications, is recommended by the World Health Organization (WHO) in an effort to reduce the number of people not appropriately taking antibiotics.[150] The evidence to support this practice over people simply taking their medications independently is of poor quality.[151] There is no strong evidence indicating that directly observed therapy improves the number of people who were cured or the number of people who complete their medicine.[151] Moderate quality evidence suggests that there is also no difference if people are observed at home versus at a clinic, or by a family member versus a health care worker.[151]
Methods to remind people of the importance of treatment and appointments may result in a small but important improvement.[152] There is also not enough evidence to support intermittent rifampicin-containing therapy given two to three times a week has equal effectiveness as daily dose regimen on improving cure rates and reducing relapsing rates.[153] There is also not enough evidence on effectiveness of giving intermittent twice or thrice weekly short course regimen compared to daily dosing regimen in treating children with tuberculosis.[154]
Primary resistance occurs when a person becomes infected with a resistant strain of TB. A person with fully susceptible MTB may develop secondary (acquired) resistance during therapy because of inadequate treatment, not taking the prescribed regimen appropriately (lack of compliance), or using low-quality medication.[155] Drug-resistant TB is a serious public health issue in many developing countries, as its treatment is longer and requires more expensive drugs. MDR-TB is defined as resistance to the two most effective first-line TB drugs: rifampicin and isoniazid. Extensively drug-resistant TB is also resistant to three or more of the six classes of second-line drugs.[156] Totally drug-resistant TB is resistant to all currently used drugs.[157] It was first observed in 2003 in Italy,[158] but not widely reported until 2012,[157][159] and has also been found in Iran and India.[160] There is some efficacy for linezolid to treat those with XDR-TB but side effects and discontinuation of medications were common.[161][162]Bedaquiline is tentatively supported for use in multiple drug-resistant TB.[163]
XDR-TB is a term sometimes used to define extensively resistant TB, and constitutes one in ten cases of MDR-TB. Cases of XDR TB have been identified in more than 90% of countries.[160]
For those with known rifampicin or MDR-TB, molecular tests such as the Genotype MTBDRsl Assay (performed on culture isolates or smear positive specimens) may be useful to detect second-line anti-tubercular drug resistance.[164][165]
Progression from TB infection to overt TB disease occurs when the bacilli overcome the immune system defenses and begin to multiply. In primary TB disease (some 1–5% of cases), this occurs soon after the initial infection.[14] However, in the majority of cases, a latent infection occurs with no obvious symptoms.[14] These dormant bacilli produce active tuberculosis in 5–10% of these latent cases, often many years after infection.[49]
The risk of reactivation increases with immunosuppression, such as that caused by infection with HIV. In people coinfected with M. tuberculosis and HIV, the risk of reactivation increases to 10% per year.[14] Studies using DNA fingerprinting of M. tuberculosis strains have shown reinfection contributes more substantially to recurrent TB than previously thought,[167] with estimates that it might account for more than 50% of reactivated cases in areas where TB is common.[168] The chance of death from a case of tuberculosis is about 4% as of 2008[update], down from 8% in 1995.[15]
In people with smear-positive pulmonary TB (without HIV co-infection), after 5 years without treatment, 50–60% die while 20–25% achieve spontaneous resolution (cure). TB is almost always fatal in those with untreated HIV co-infection and death rates are increased even with antiretroviral treatment of HIV.[169]
Roughly one-quarter of the world's population has been infected with M. tuberculosis,[6] with new infections occurring in about 1% of the population each year.[12] However, most infections with M. tuberculosis do not cause disease,[170] and 90–95% of infections remain asymptomatic.[88] In 2012, an estimated 8.6 million chronic cases were active.[171] In 2010, 8.8 million new cases of tuberculosis were diagnosed, and 1.20–1.45 million deaths occurred (most of these occurring in developing countries).[79][172] Of these, about 0.35 million occur in those also infected with HIV.[173] In 2018, tuberculosis was the leading cause of death worldwide from a single infectious agent.[174] The total number of tuberculosis cases has been decreasing since 2005, while new cases have decreased since 2002.[79]
Tuberculosis[clarification needed] incidence is seasonal, with peaks occurring every spring and summer.[175][176][177][178] The reasons for this are unclear, but may be related to vitamin D deficiency during the winter.[178][179] There are also studies linking tuberculosis to different weather conditions like low temperature, low humidity and low rainfall. It has been suggested that tuberculosis incidence rates may be connected to climate change.[180]
Tuberculosis is closely linked to both overcrowding and malnutrition, making it one of the principal diseases of poverty.[15] Those at high risk thus include: people who inject illicit drugs, inhabitants and employees of locales where vulnerable people gather (e.g., prisons and homeless shelters), medically underprivileged and resource-poor communities, high-risk ethnic minorities, children in close contact with high-risk category patients, and health-care providers serving these patients.[181]
The rate of tuberculosis varies with age. In Africa, it primarily affects adolescents and young adults.[182] However, in countries where incidence rates have declined dramatically (such as the United States), tuberculosis is mainly a disease of the elderly and immunocompromised (risk factors are listed above).[14][183] Worldwide, 22 "high-burden" states or countries together experience 80% of cases as well as 83% of deaths.[160]
In Canada and Australia, tuberculosis is many times more common among the Indigenous peoples, especially in remote areas.[184][185] Factors contributing to this include higher prevalence of predisposing health conditions and behaviours, and overcrowding and poverty. In some Canadian Indigenous groups, genetic susceptibility may play a role.[78]
Socioeconomic status (SES) strongly affects TB risk. People of low SES are both more likely to contract TB and to be more severely affected by the disease. Those with low SES are more likely to be affected by risk factors for developing TB (e.g., malnutrition, indoor air pollution, HIV co-infection, etc.), and are additionally more likely to be exposed to crowded and poorly ventilated spaces. Inadequate healthcare also means that people with active disease who facilitate spread are not diagnosed and treated promptly; sick people thus remain in the infectious state and (continue to) spread the infection.[78]
The distribution of tuberculosis is not uniform across the globe; about 80% of the population in many African, Caribbean, South Asian, and eastern European countries test positive in tuberculin tests, while only 5–10% of the U.S. population test positive.[14] Hopes of totally controlling the disease have been dramatically dampened because of many factors, including the difficulty of developing an effective vaccine, the expensive and time-consuming diagnostic process, the necessity of many months of treatment, the increase in HIV-associated tuberculosis, and the emergence of drug-resistant cases in the 1980s.[15]
In developed countries, tuberculosis is less common and is found mainly in urban areas. In Europe, deaths from TB fell from 500 out of 100,000 in 1850 to 50 out of 100,000 by 1950. Improvements in public health were reducing tuberculosis even before the arrival of antibiotics, although the disease remained a significant threat to public health, such that when the Medical Research Council was formed in Britain in 1913 its initial focus was tuberculosis research.[186]
In 2010, rates per 100,000 people in different areas of the world were: globally 178, Africa 332, the Americas 36, Eastern Mediterranean 173, Europe 63, Southeast Asia 278, and Western Pacific 139.[173]
In 2023, tuberculosis overtook COVID-19 as the leading cause of infectious disease-related deaths globally, according to a World Health Organization.[187] Around 8.2 million people were newly diagnosed with TB last year, allowing them access to treatment—a record high since WHO’s tracking began in 1995 and an increase from 7.5 million cases in 2022.[188] The report highlights ongoing obstacles in combating TB, including severe funding shortages that hinder efforts toward eradication. Although TB-related deaths decreased slightly to 1.25 million in 2023 from 1.32 million in 2022, the overall number of new cases rose marginally to an estimated 10.8 million.
Russia has achieved particularly dramatic progress with a decline in its TB mortality rate—from 61.9 per 100,000 in 1965 to 2.7 per 100,000 in 1993;[189][190] however, mortality rate increased to 24 per 100,000 in 2005 and then recoiled to 11 per 100,000 by 2015.[191]
China has achieved particularly dramatic progress, with about an 80% reduction in its TB mortality rate between 1990 and 2010.[173] The number of new cases has declined by 17% between 2004 and 2014.[160]
In 2007, the country with the highest estimated incidence rate of TB was Eswatini, with 1,200 cases per 100,000 people. In 2017, the country with the highest estimated incidence rate as a % of the population was Lesotho, with 665 cases per 100,000 people.[192]
In South Africa, 54,200 people died in 2022 from TB. The incidence rate was 468 per 100,000 people; in 2015, this was 988 per 100,000. The total incidence was 280,000 in 2022; in 2015, this was 552,000.[193]
As of 2017, India had the largest total incidence, with an estimated 2,740,000 cases.[192] According to the World Health Organization (WHO), in 2000–2015, India's estimated mortality rate dropped from 55 to 36 per 100,000 population per year with estimated 480 thousand people died of TB in 2015.[194][195] In India a major proportion of tuberculosis patients are being treated by private partners and private hospitals. Evidence indicates that the tuberculosis national survey does not represent the number of cases that are diagnosed and recorded by private clinics and hospitals in India.[196]
In Canada, tuberculosis was endemic in some rural areas as of 1998.[197] The tuberculosis case rate in Canada in 2021 was 4.8 per 100,000 persons. The rates were highest among Inuit (135.1 per 100,000), First Nations (16.1 per 100,000) and people born outside of Canada (12.3 per 100,000).[198]
In the United States, Native Americans have a fivefold greater mortality from TB,[199] and racial and ethnic minorities accounted for 88% of all reported TB cases.[200] The overall tuberculosis case rate in the United States was 2.9 per 100,000 persons in
2023, representing a 16% increase in cases compared to 2022.[200]
In 2017, in the United Kingdom, the national average was 9 per 100,000 and the highest incidence rates in Western Europe were 20 per 100,000 in Portugal.
Number of new cases of tuberculosis per 100,000 people, 2016.[202]
Tuberculosis has been known by many names from the technical to the familiar.[204]Phthisis (φθίσις) is the Greek word for consumption, an old term for pulmonary tuberculosis;[8] around 460 BCE, Hippocrates described phthisis as a disease of dry seasons.[205] The abbreviation TB is short for tubercle bacillus. Consumption was the most common nineteenth century English word for the disease, and was also in use well into the twentieth century. The Latin root con meaning 'completely' is linked to sumere meaning 'to take up from under'.[206] In The Life and Death of Mr Badman by John Bunyan, the author calls consumption "the captain of all these men of death."[207] "Great white plague" has also been used.[204]
In 2014, the WHO adopted the "End TB" strategy which aims to reduce TB incidence by 80% and TB deaths by 90% by 2030.[221] The strategy contains a milestone to reduce TB incidence by 20% and TB deaths by 35% by 2020.[222] However, by 2020 only a 9% reduction in incidence per population was achieved globally, with the European region achieving 19% and the African region achieving 16% reductions.[222] Similarly, the number of deaths only fell by 14%, missing the 2020 milestone of a 35% reduction, with some regions making better progress (31% reduction in Europe and 19% in Africa).[222] Correspondingly, also treatment, prevention and funding milestones were missed in 2020, for example only 6.3 million people were started on TB prevention short of the target of 30 million.[222]
The World Health Organization (WHO), the Bill and Melinda Gates Foundation, and the U.S. government are subsidizing a fast-acting diagnostic tuberculosis test for use in low- and middle-income countries as of 2012.[223][224][225] In addition to being fast-acting, the test can determine if there is resistance to the antibiotic rifampicin which may indicate multi-drug resistant tuberculosis and is accurate in those who are also infected with HIV.[223][226] Many resource-poor places as of 2011[update] have access to only sputum microscopy.[227]
India had the highest total number of TB cases worldwide in 2010, in part due to poor disease management within the private and public health care sector.[228] Programs such as the Revised National Tuberculosis Control Program are working to reduce TB levels among people receiving public health care.[229][230]
A 2014 EIU-healthcare report finds there is a need to address apathy and urges for increased funding. The report cites among others Lucica Ditui "[TB] is like an orphan. It has been neglected even in countries with a high burden and often forgotten by donors and those investing in health interventions."[160]
Slow progress has led to frustration, expressed by the executive director of the Global Fund to Fight AIDS, Tuberculosis and Malaria – Mark Dybul: "we have the tools to end TB as a pandemic and public health threat on the planet, but we are not doing it."[160] Several international organizations are pushing for more transparency in treatment, and more countries are implementing mandatory reporting of cases to the government as of 2014, although adherence is often variable. Commercial treatment providers may at times overprescribe second-line drugs as well as supplementary treatment, promoting demands for further regulations.[160]
The government of Brazil provides universal TB care, which reduces this problem.[160] Conversely, falling rates of TB infection may not relate to the number of programs directed at reducing infection rates but may be tied to an increased level of education, income, and health of the population.[160] Costs of the disease, as calculated by the World Bank in 2009 may exceed US$150 billion per year in "high burden" countries.[160] Lack of progress eradicating the disease may also be due to lack of patient follow-up – as among the 250 million rural migrants in China.[160]
There is insufficient data to show that active contact tracing helps to improve case detection rates for tuberculosis.[231] Interventions such as house-to-house visits, educational leaflets, mass media strategies, educational sessions may increase tuberculosis detection rates in short-term.[232] There is no study that compares new methods of contact tracing such as social network analysis with existing contact tracing methods.[233]
Slow progress in preventing the disease may in part be due to stigma associated with TB.[160] Stigma may be due to the fear of transmission from affected individuals. This stigma may additionally arise due to links between TB and poverty, and in Africa, AIDS.[160] Such stigmatization may be both real and perceived; for example, in Ghana, individuals with TB are banned from attending public gatherings.[234]
Stigma towards TB may result in delays in seeking treatment,[160] lower treatment compliance, and family members keeping cause of death secret[234] – allowing the disease to spread further.[160] In contrast, in Russia stigma was associated with increased treatment compliance.[234] TB stigma also affects socially marginalized individuals to a greater degree and varies between regions.[234]
One way to decrease stigma may be through the promotion of "TB clubs", where those infected may share experiences and offer support, or through counseling.[234] Some studies have shown TB education programs to be effective in decreasing stigma, and may thus be effective in increasing treatment adherence.[234] Despite this, studies on the relationship between reduced stigma and mortality are lacking as of 2010[update], and similar efforts to decrease stigma surrounding AIDS have been minimally effective.[234] Some have claimed the stigma to be worse than the disease, and healthcare providers may unintentionally reinforce stigma, as those with TB are often perceived as difficult or otherwise undesirable.[160] A greater understanding of the social and cultural dimensions of tuberculosis may also help with stigma reduction.[235]
The BCG vaccine has limitations and research to develop new TB vaccines is ongoing.[236] A number of potential candidates are currently in phase I and II clinical trials.[236][237] Two main approaches are used to attempt to improve the efficacy of available vaccines. One approach involves adding a subunit vaccine to BCG, while the other strategy is attempting to create new and better live vaccines.[236]MVA85A, an example of a subunit vaccine, is in trials in South Africa as of 2006, is based on a genetically modified vaccinia virus.[238] Vaccines are hoped to play a significant role in treatment of both latent and active disease.[239]
To encourage further discovery, researchers and policymakers are promoting new economic models of vaccine development as of 2006, including prizes, tax incentives, and advance market commitments.[240][241] A number of groups, including the Stop TB Partnership,[242] the South African Tuberculosis Vaccine Initiative, and the Aeras Global TB Vaccine Foundation, are involved with research.[243] Among these, the Aeras Global TB Vaccine Foundation received a gift of more than $280 million (US) from the Bill and Melinda Gates Foundation to develop and license an improved vaccine against tuberculosis for use in high burden countries.[244][245]
In 2012 a new medication regimen was approved in the US for multidrug-resistant tuberculosis, using bedaquiline as well as existing drugs. There were initial concerns about the safety of this drug,[246][247][248][249][250] but later research on larger groups found that this regimen improved health outcomes.[251] By 2017 the drug was used in at least 89 countries.[252] Another new drug is delamanid, which was first approved by the European Medicines Agency in 2013 to be used in multidrug-resistant tuberculosis patients,[253] and by 2017 was used in at least 54 countries.[252]
Steroids add-on therapy has not shown any benefits for active pulmonary tuberculosis infection.[254]
Mycobacteria infect many different animals, including birds,[255] fish, rodents,[256] and reptiles.[257] The subspecies Mycobacterium tuberculosis, though, is rarely present in wild animals.[258] An effort to eradicate bovine tuberculosis caused by Mycobacterium bovis from the cattle and deer herds of New Zealand has been relatively successful.[259] Efforts in Great Britain have been less successful.[260][261]
As of 2015[update], tuberculosis appears to be widespread among captive elephants in the US. It is believed that the animals originally acquired the disease from humans, a process called reverse zoonosis. Because the disease can spread through the air to infect both humans and other animals, it is a public health concern affecting circuses and zoos.[262][263]
^Ferri FF (2010). Ferri's differential diagnosis : a practical guide to the differential diagnosis of symptoms, signs, and clinical disorders (2nd ed.). Philadelphia, PA: Elsevier/Mosby. p. Chapter T. ISBN978-0-323-07699-9.
^ abHarris RE (2013). "Epidemiology of Tuberculosis". Epidemiology of chronic disease: global perspectives. Burlington, MA: Jones & Bartlett Learning. p. 682. ISBN978-0-7637-8047-0. Archived from the original on 7 February 2024. Retrieved 17 September 2017.
^ abcdefghiAdkinson NF, Bennett JE, Douglas RG, Mandell GL (2010). Mandell, Douglas, and Bennett's principles and practice of infectious diseases (7th ed.). Philadelphia, PA: Churchill Livingstone/Elsevier. p. Chapter 250. ISBN978-0-443-06839-3.
^Pearce-Duvet JM (August 2006). "The origin of human pathogens: evaluating the role of agriculture and domestic animals in the evolution of human disease". Biological Reviews of the Cambridge Philosophical Society. 81 (3): 369–82. doi:10.1017/S1464793106007020. PMID16672105. S2CID6577678.
^Marten B (1720). A New Theory of Consumptions—More Especially a Phthisis or Consumption of the Lungs. London, England: T. Knaplock. Archived from the original on 26 March 2023. Retrieved 8 December 2020. P. 51: "The Original and Essential Cause ... may possibly be some certain Species of Animalcula or wonderfully minute living Creatures, ... " P. 79: "It may be therefore very likely, that by an habitual lying in the same Bed with a Consumptive Patient, constantly Eating and Drinking with him, or by very frequently conversing so nearly, as to draw in part of the Breath he emits from his Lungs, a Consumption may be caught by a sound Person; ... "
^Laennec RT (1819). De l'auscultation médiate ... (in French). Vol. 1. Paris, France: J.-A. Brosson et J.-S Chaudé. p. 20. Archived from the original on 2 June 2021. Retrieved 6 December 2020. From p. 20: "L'existence des tubercules dans le poumon est la cause et constitue le charactère anatomique propre de la phthisie pulmonaire (a). (a) ... l'effet dont cette maladie tire son nom, c'est-à-dire, la consumption." (The existence of tubercles in the lung is the cause and constitutes the unique anatomical characteristic of pulmonary tuberculosis (a). (a) ... the effect from which this malady [pulmonary tuberculosis] takes its name, that is, consumption.)
^Schönlein JL (1832). Allgemeine und specielle Pathologie und Therapie [General and Special Pathology and Therapy] (in German). Vol. 3. Würzburg, (Germany): C. Etlinger. p. 103. Archived from the original on 2 June 2021. Retrieved 6 December 2020.
^The word "tuberculosis" first appeared in Schönlein's clinical notes in 1829. See: Jay SJ, Kırbıyık U, Woods JR, Steele GA, Hoyt GR, Schwengber RB, et al. (November 2018). "Modern theory of tuberculosis: culturomic analysis of its historical origin in Europe and North America". The International Journal of Tuberculosis and Lung Disease. 22 (11): 1249–1257. doi:10.5588/ijtld.18.0239. PMID30355403. S2CID53027676. See especially Appendix, p. iii.
^Villemin JA (1865). "Cause et nature de la tuberculose" [Cause and nature of tuberculosis]. Bulletin de l'Académie Impériale de Médecine (in French). 31: 211–216. Archived from the original on 9 December 2021. Retrieved 6 December 2020.
^Burdon-Sanderson, John Scott. (1870) "Introductory Report on the Intimate Pathology of Contagion." Appendix to: Twelfth Report to the Lords of Her Majesty's Most Honourable Privy Council of the Medical Officer of the Privy Council [for the year 1869], Parliamentary Papers (1870), vol. 38, 229–256.
^Bonah C (December 2005). "The 'experimental stable' of the BCG vaccine: safety, efficacy, proof, and standards, 1921–1933". Studies in History and Philosophy of Biological and Biomedical Sciences. 36 (4): 696–721. doi:10.1016/j.shpsc.2005.09.003. PMID16337557.
^Comstock GW (September 1994). "The International Tuberculosis Campaign: a pioneering venture in mass vaccination and research". Clinical Infectious Diseases. 19 (3): 528–40. doi:10.1093/clinids/19.3.528. PMID7811874.
^Lalloo UG, Naidoo R, Ambaram A (May 2006). "Recent advances in the medical and surgical treatment of multi-drug resistant tuberculosis". Current Opinion in Pulmonary Medicine. 12 (3): 179–85. doi:10.1097/01.mcp.0000219266.27439.52. PMID16582672. S2CID24221563.
^Kamboj A, Lause M, Kamboj K (2023). "The Problem of Tuberculosis: Myths, Stigma, and Mimics". In Rezaei N (ed.). Tuberculosis. Integrated Science. Vol. 11. Springer. pp. 1046–1062. doi:10.1007/978-3-031-15955-8_50. ISBN978-3-031-15954-1.
^Southwick F (2007). "Chapter 4: Pulmonary Infections". Infectious Diseases: A Clinical Short Course, 2nd ed. McGraw-Hill Medical Publishing Division. pp. 104, 313–14. ISBN978-0-07-147722-2.
^Thoen C, Lobue P, de Kantor I (February 2006). "The importance of Mycobacterium bovis as a zoonosis". Veterinary Microbiology. 112 (2–4): 339–45. doi:10.1016/j.vetmic.2005.11.047. PMID16387455.
^American Thoracic Society (August 1997). "Diagnosis and treatment of disease caused by nontuberculous mycobacteria". American Journal of Respiratory and Critical Care Medicine. 156 (2 Pt 2): S1–25. doi:10.1164/ajrccm.156.2.atsstatement. PMID9279284.
^ abAhmed N, Hasnain SE (September 2011). "Molecular epidemiology of tuberculosis in India: moving forward with a systems biology approach". Tuberculosis. 91 (5): 407–13. doi:10.1016/j.tube.2011.03.006. PMID21514230.
^van Zyl Smit RN, Pai M, Yew WW, Leung CC, Zumla A, Bateman ED, et al. (January 2010). "Global lung health: the colliding epidemics of tuberculosis, tobacco smoking, HIV and COPD". The European Respiratory Journal. 35 (1): 27–33. doi:10.1183/09031936.00072909. PMC5454527. PMID20044459. These analyses indicate that smokers are almost twice as likely to be infected with TB and to progress to active disease (RR of about 1.5 for latent TB infection (LTBI) and RR of ~2.0 for TB disease). Smokers are also twice as likely to die from TB (RR of about 2.0 for TB mortality), but data are difficult to interpret because of heterogeneity in the results across studies.
^"TB Risk Factors". CDC. 18 March 2016. Archived from the original on 30 August 2020. Retrieved 25 August 2020.
^Möller M, Hoal EG (March 2010). "Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis". Tuberculosis. 90 (2): 71–83. doi:10.1016/j.tube.2010.02.002. PMID20206579.
^Good JM, Cooper S, Doane AS (1835). The Study of Medicine. Harper. p. 32. Archived from the original on 10 August 2016.
^Jacob JT, Mehta AK, Leonard MK (January 2009). "Acute forms of tuberculosis in adults". The American Journal of Medicine. 122 (1): 12–17. doi:10.1016/j.amjmed.2008.09.018. PMID19114163.
^Rothel JS, Andersen P (December 2005). "Diagnosis of latent Mycobacterium tuberculosis infection: is the demise of the Mantoux test imminent?". Expert Review of Anti-Infective Therapy. 3 (6): 981–93. doi:10.1586/14787210.3.6.981. PMID16307510. S2CID25423684.
^Amicosante M, Ciccozzi M, Markova R (April 2010). "Rational use of immunodiagnostic tools for tuberculosis infection: guidelines and cost effectiveness studies". The New Microbiologica. 33 (2): 93–107. PMID20518271.
^Coker R, Thomas M, Lock K, Martin R (2007). "Detention and the evolving threat of tuberculosis: evidence, ethics, and law". The Journal of Law, Medicine & Ethics. 35 (4): 609–15, 512. doi:10.1111/j.1748-720X.2007.00184.x. PMID18076512. S2CID19924571.
^Warrell DA, Cox TM, Firth JD, Benz EJ (2005). Sections 1–10 (4. ed., paperback ed.). Oxford [u.a.]: Oxford Univ. Press. p. 560. ISBN978-0-19-857014-1. Archived from the original on 6 September 2015.
^Lambert ML, Hasker E, Van Deun A, Roberfroid D, Boelaert M, Van der Stuyft P (May 2003). "Recurrence in tuberculosis: relapse or reinfection?". The Lancet. Infectious Diseases. 3 (5): 282–7. doi:10.1016/S1473-3099(03)00607-8. PMID12726976.
^Parrinello CM, Crossa A, Harris TG (January 2012). "Seasonality of tuberculosis in New York City, 1990-2007". The International Journal of Tuberculosis and Lung Disease. 16 (1): 32–37. doi:10.5588/ijtld.11.0145. PMID22236842.
^ abKorthals Altes H, Kremer K, Erkens C, van Soolingen D, Wallinga J (May 2012). "Tuberculosis seasonality in the Netherlands differs between natives and non-natives: a role for vitamin D deficiency?". The International Journal of Tuberculosis and Lung Disease. 16 (5): 639–644. doi:10.5588/ijtld.11.0680. PMID22410705.
^Griffith DE, Kerr CM (August 1996). "Tuberculosis: disease of the past, disease of the present". Journal of PeriAnesthesia Nursing. 11 (4): 240–45. doi:10.1016/S1089-9472(96)80023-2. PMID8964016.
^"2005 Surveillance Slide Set". Centers for Disease Control and Prevention. 12 September 2006. Archived from the original on 23 November 2006. Retrieved 13 October 2006.
^Shkolnikov VM, Meslé F (1996). "The Russian Epidemiological Crisis as Mirrored by Mortality Trends". In DaVanzo J, Farnsworth G (eds.). Russia's Demographic "Crisis". RAND Corporation. p. 142. ISBN0-8330-2446-9. Archived from the original on 20 February 2023. Retrieved 20 February 2023.
^"Tuberculosis (whole issue)". Journal of the American Medical Association. 293 (22): cover. 8 June 2005. Archived from the original on 24 August 2020. Retrieved 4 October 2017.
^Lemlein RF (1981). "Influence of Tuberculosis on the Work of Visual Artists: Several Prominent Examples". Leonardo. 14 (2): 114–11. doi:10.2307/1574402. JSTOR1574402. S2CID191371443.
^Corliss R (22 December 2008). "Top 10 Worst Christmas Movies". Time. Archived from the original on 22 September 2020. Retrieved 28 September 2017. 'If you don't cry when Bing Crosby tells Ingrid Bergman she has tuberculosis', Joseph McBride wrote in 1973, 'I never want to meet you, and that's that.'
^Ibanga HB, Brookes RH, Hill PC, Owiafe PK, Fletcher HA, Lienhardt C, et al. (August 2006). "Early clinical trials with a new tuberculosis vaccine, MVA85A, in tuberculosis-endemic countries: issues in study design". The Lancet. Infectious Diseases. 6 (8): 522–8. doi:10.1016/S1473-3099(06)70552-7. PMID16870530.
^Avorn J (April 2013). "Approval of a tuberculosis drug based on a paradoxical surrogate measure". JAMA. 309 (13): 1349–1350. doi:10.1001/jama.2013.623. PMID23430122.
^Shivaprasad HL, Palmieri C (January 2012). "Pathology of mycobacteriosis in birds". The Veterinary Clinics of North America. Exotic Animal Practice. 15 (1): 41–55, v–vi. doi:10.1016/j.cvex.2011.11.004. PMID22244112.
^Reavill DR, Schmidt RE (January 2012). "Mycobacterial lesions in fish, amphibians, reptiles, rodents, lagomorphs, and ferrets with reference to animal models". The Veterinary Clinics of North America. Exotic Animal Practice. 15 (1): 25–40, v. doi:10.1016/j.cvex.2011.10.001. PMID22244111.
^Mitchell MA (January 2012). "Mycobacterial infections in reptiles". The Veterinary Clinics of North America. Exotic Animal Practice. 15 (1): 101–11, vii. doi:10.1016/j.cvex.2011.10.002. PMID22244116.
^Ryan TJ, Livingstone PG, Ramsey DS, de Lisle GW, Nugent G, Collins DM, et al. (February 2006). "Advances in understanding disease epidemiology and implications for control and eradication of tuberculosis in livestock: the experience from New Zealand". Veterinary Microbiology. 112 (2–4): 211–19. doi:10.1016/j.vetmic.2005.11.025. PMID16330161.