Non-local model for non-linear dispersive waves
In mathematical physics , the Whitham equation is a non-local model for non-linear dispersive waves . [ 1] [ 2] [ 3]
The equation is notated as follows:
∂
η
∂
t
+
α
η
∂
η
∂
x
+
∫
−
∞
+
∞
K
(
x
−
ξ
)
∂
η
(
ξ
,
t
)
∂
ξ
d
ξ
=
0.
{\displaystyle {\frac {\partial \eta }{\partial t}}+\alpha \eta {\frac {\partial \eta }{\partial x}}+\int _{-\infty }^{+\infty }K(x-\xi )\,{\frac {\partial \eta (\xi ,t)}{\partial \xi }}\,{\text{d}}\xi =0.}
This integro-differential equation for the oscillatory variable η (x ,t ) is named after Gerald Whitham who introduced it as a model to study breaking of non-linear dispersive water waves in 1967.[ 4] Wave breaking – bounded solutions with unbounded derivatives – for the Whitham equation has recently been proven.[ 5]
For a certain choice of the kernel K (x − ξ ) it becomes the Fornberg–Whitham equation .
Using the Fourier transform (and its inverse), with respect to the space coordinate x and in terms of the wavenumber k :
c
ww
(
k
)
=
g
k
tanh
(
k
h
)
,
{\displaystyle c_{\text{ww}}(k)={\sqrt {{\frac {g}{k}}\,\tanh(kh)}},}
while
α
ww
=
3
2
g
h
,
{\displaystyle \alpha _{\text{ww}}={\frac {3}{2}}{\sqrt {\frac {g}{h}}},}
with g the gravitational acceleration and h the mean water depth. The associated kernel K ww (s ) is, using the inverse Fourier transform:[ 4]
K
ww
(
s
)
=
1
2
π
∫
−
∞
+
∞
c
ww
(
k
)
e
i
k
s
d
k
=
1
2
π
∫
−
∞
+
∞
c
ww
(
k
)
cos
(
k
s
)
d
k
,
{\displaystyle K_{\text{ww}}(s)={\frac {1}{2\pi }}\int _{-\infty }^{+\infty }c_{\text{ww}}(k)\,{\text{e}}^{iks}\,{\text{d}}k={\frac {1}{2\pi }}\int _{-\infty }^{+\infty }c_{\text{ww}}(k)\,\cos(ks)\,{\text{d}}k,}
since c ww is an even function of the wavenumber k .
c
kdv
(
k
)
=
g
h
(
1
−
1
6
k
2
h
2
)
,
{\displaystyle c_{\text{kdv}}(k)={\sqrt {gh}}\left(1-{\frac {1}{6}}k^{2}h^{2}\right),}
K
kdv
(
s
)
=
g
h
(
δ
(
s
)
+
1
6
h
2
δ
′
′
(
s
)
)
,
{\displaystyle K_{\text{kdv}}(s)={\sqrt {gh}}\left(\delta (s)+{\frac {1}{6}}h^{2}\,\delta ^{\prime \prime }(s)\right),}
α
kdv
=
3
2
g
h
,
{\displaystyle \alpha _{\text{kdv}}={\frac {3}{2}}{\sqrt {\frac {g}{h}}},}
with δ (s ) the Dirac delta function .
K
fw
(
s
)
=
1
2
ν
e
−
ν
|
s
|
{\displaystyle K_{\text{fw}}(s)={\frac {1}{2}}\nu {\text{e}}^{-\nu |s|}}
and
c
fw
=
ν
2
ν
2
+
k
2
,
{\displaystyle c_{\text{fw}}={\frac {\nu ^{2}}{\nu ^{2}+k^{2}}},}
with
α
fw
=
3
2
.
{\displaystyle \alpha _{\text{fw}}={\frac {3}{2}}.}
The resulting integro-differential equation can be reduced to the partial differential equation known as the Fornberg–Whitham equation :[ 6]
(
∂
2
∂
x
2
−
ν
2
)
(
∂
η
∂
t
+
3
2
η
∂
η
∂
x
)
+
∂
η
∂
x
=
0.
{\displaystyle \left({\frac {\partial ^{2}}{\partial x^{2}}}-\nu ^{2}\right)\left({\frac {\partial \eta }{\partial t}}+{\frac {3}{2}}\,\eta \,{\frac {\partial \eta }{\partial x}}\right)+{\frac {\partial \eta }{\partial x}}=0.}
This equation is shown to allow for peakon solutions – as a model for waves of limiting height – as well as the occurrence of wave breaking (shock waves , absent in e.g. solutions of the Korteweg–de Vries equation).[ 6] [ 3]
Notes and references [ edit ]
Debnath, L. (2005), Nonlinear Partial Differential Equations for Scientists and Engineers , Springer, ISBN 9780817643232
Fetecau, R.; Levy, Doron (2005), "Approximate Model Equations for Water Waves", Communications in Mathematical Sciences , 3 (2): 159– 170, doi :10.4310/CMS.2005.v3.n2.a4
Fornberg, B.; Whitham, G.B. (1978), "A Numerical and Theoretical Study of Certain Nonlinear Wave Phenomena", Philosophical Transactions of the Royal Society A , 289 (1361): 373– 404, Bibcode :1978RSPTA.289..373F , CiteSeerX 10.1.1.67.6331 , doi :10.1098/rsta.1978.0064 , S2CID 7333207
Hur, Vera Mikyoung (2017), "Wave breaking in the Whitham equation", Advances in Mathematics , 317 : 410– 437, arXiv :1506.04075 , doi :10.1016/j.aim.2017.07.006 , S2CID 119121867
Moldabayev, D.; Kalisch, H.; Dutykh, D. (2015), "The Whitham Equation as a model for surface water waves", Physica D: Nonlinear Phenomena , 309 : 99– 107, arXiv :1410.8299 , Bibcode :2015PhyD..309...99M , doi :10.1016/j.physd.2015.07.010 , S2CID 55302388
Naumkin, P.I.; Shishmarev, I.A. (1994), Nonlinear Nonlocal Equations in the Theory of Waves , American Mathematical Society, ISBN 9780821845738
Whitham, G.B. (1967), "Variational methods and applications to water waves", Proceedings of the Royal Society A , 299 (1456): 6– 25, Bibcode :1967RSPSA.299....6W , doi :10.1098/rspa.1967.0119 , S2CID 122802187
Whitham, G.B. (1974), Linear and nonlinear waves , Wiley-Interscience, Bibcode :1974lnw..book.....W , doi :10.1002/9781118032954 , ISBN 978-0-471-94090-6