In the mathematical field of probability, the Wiener sausage is a neighborhood of the trace of a Brownian motion up to a time t, given by taking all points within a fixed distance of Brownian motion. It can be visualized as a sausage of fixed radius whose centerline is Brownian motion. The Wiener sausage was named after Norbert Wiener by M. D. Donsker and S. R. Srinivasa Varadhan (1975) because of its relation to the Wiener process; the name is also a pun on Vienna sausage, as "Wiener" is German for "Viennese".
There has been a lot of work on the behavior of the volume (Lebesgue measure) |Wδ(t)| of the Wiener sausage as it becomes thin (δ→0); by rescaling, this is essentially equivalent to studying the volume as the sausage becomes long (t→∞).
Spitzer (1964) showed that in 3 dimensions the expected value of the volume of the sausage is
In dimension d at least 3 the volume of the Wiener sausage is asymptotic to
as t tends to infinity. In dimensions 1 and 2 this formula gets replaced by and respectively. Whitman (1964), a student of Spitzer, proved similar results for generalizations of Wiener sausages with cross sections given by more general compact sets than balls.
Simon, Barry (2005), Functional integration and quantum physics, Providence, RI: AMS Chelsea Publishing, ISBN0-8218-3582-3, MR2105995 Especially chapter 22.