Jedes Verfahren, das auf dem diskreten Logarithmus in endlichen Körpern basiert, wie z. B. der Digital Signature Algorithm, das Elgamal-Verschlüsselungsverfahren oder der Diffie-Hellman-Schlüsselaustausch, lässt sich in einfacher Weise auf elliptische Kurven übertragen und somit zu einem Elliptic-Curve-Kryptosystem umformen. Dabei werden die beim Originalverfahren eingesetzten Operationen (Multiplikation und Potenzieren) auf dem endlichen Körper ersetzt durch entsprechende Operationen (Punktaddition und Skalarmultiplikation) der Punkte auf der elliptischen Kurve. Das -fache Addieren eines Punktes zu sich selbst (also die Multiplikation mit dem Skalar ) wird mit bezeichnet und entspricht einer Potenz im ursprünglichen Verfahren.
Auf elliptischen Kurven kann eine additive zyklische Gruppe definiert werden, die aus den Vielfachen eines Punktes auf der Kurve, des Erzeugers der Gruppe, besteht. Das Addieren zweier Punkte in der Gruppe ist einfach, es gibt aber Kurven, auf denen die „skalare Division“ für einen Punkt schwer ist, d. h., es ist kein effizientes Verfahren bekannt, um zu dem gegebenen Punkt in einer von einem Punkt erzeugten Gruppe eine natürliche Zahl mit zu finden. Damit gibt es auf diesen Kurven ein Analogon zum Diskreten Logarithmus-Problem (DLP) in multiplikativen Gruppen, das ebenfalls DLP genannt wird.
Analog kann man das Computational-Diffie-Hellman-Problem (CDH, zu gegebenen und berechne ) und das Decisional-Diffie-Hellman-Problem (DDH) definieren. Dadurch können kryptographische Verfahren, deren Sicherheit auf diesen Problemen beruht, auf elliptische Kurven übertragen werden, für die diese Probleme vermutlich schwierig sind. Beispiele dafür sind
Darüber hinaus gibt es Kurven , auf denen eine Pairing genannte bilineare Abbildung in eine Gruppe existiert. In diesen Kurven ist zwar DDH leicht, da gilt, die Existenz des Pairings erlaubt aber viele neuartige Anwendungen.
Da das Problem des diskreten Logarithmus in elliptischen Kurven (ECDLP) deutlich schwerer ist als die Berechnung des diskreten Logarithmus in endlichen Körpern oder die Faktorisierung ganzer Zahlen, kommen Kryptosysteme, die auf elliptischen Kurven beruhen – bei vergleichbarer Sicherheit – mit erheblich kürzeren Schlüsseln aus als die herkömmlichen asymmetrischen Kryptoverfahren, wie z. B. das RSA-Kryptosystem oder der Diffie-Hellman-Schlüsselaustausch. Die derzeit schnellsten Algorithmen sind der Babystep-Giantstep-Algorithmus und die Pollard-Rho-Methode, deren Laufzeit bei liegt, wobei die Bitlänge der Größe des zugrundeliegenden Körpers ist. Nach heutigem Kenntnisstand wird z. B. mit einer Schlüssellänge von 160 Bit eine ähnliche Sicherheit erreicht wie bei RSA mit 1024 Bit.[3]
ECC eignet sich daher besonders dann, wenn die Speicher- oder Rechenkapazität begrenzt ist, z. B. in Smartcards oder anderen eingebetteten Systemen.
Beispielhaft werden hier die vom US-amerikanischen National Institute of Standards and Technology (NIST) und ECRYPT angegebenen äquivalenten Schlüssellängen für RSA- bzw. Diffie-Hellman-Schlüssel für bestimmte Sicherheitsniveaus aufgelistet.
Die Spalte Sicherheitsniveau bezieht sich auf die Bitlänge eines vergleichbar sicheren symmetrischen Verschlüsselungsalgorithmus.
Die mathematischen Operationen auf elliptischen Kurven sind aufwändiger zu berechnen als Operationen in vergleichbar großen endlichen Körpern oder RSA-Modulen. Allerdings kann mit erheblich kürzeren Schlüsseln ein Sicherheitsniveau erreicht werden, das mit Verfahren auf Basis des diskreten Logarithmus oder mit RSA vergleichbar ist. Unter anderem durch die kürzeren Schlüssel können Elliptische-Kurven-Kryptosysteme daher bei einem vergleichbaren Sicherheitsniveau schneller sein.[7] Ein Vergleich der Recheneffizienz dieser kryptographischen Verfahren hängt jedoch stark von den Details der Implementierung (kryptographische Parameter, Arithmetik, Optimierungen, Programmiersprache und Compiler, zugrunde liegende Hardware) ab.
Im Mai 2011 veröffentlichten die Forscher Billy Bob Brumley und Nicola Tuveri eine wissenschaftliche Arbeit,[8] in welcher sie einen erfolgreichen Timing-Angriff auf ECDSA beschreiben.[9]
Dabei setzten die Forscher einen Server mit OpenSSL auf. Der Angriff erfolgte über die Tatsache, dass das Ver- und Entschlüsseln mit unterschiedlichen ECDSA-Schlüsseln in der Implementierung von OpenSSL (Versionen 0.9.8o und 1.0.0.a) unterschiedlich viel Zeit in Anspruch nimmt. So konnten Brumley und Tuveri ohne Zugriff auf den Server den privaten Schlüssel berechnen. Eine Implementierung mit randomisierten Parametern oder eine geeignete Wahl der Kurvenparameter erlaubt jedoch Operationen mit konstantem Zeitbedarf.[10]
Die in Österreich gängigen Bürgerkarten (e-card, Bankomat- oder a-sign Premium Karte) verwenden ECC seit ihrer Einführung 2004/2005, womit Österreich zu den Vorreitern in deren breitem Einsatz zählt.[13]
Die Reisepässe der meisten Europäischen Staaten (u. a. Deutschland) verwenden ECC zumindest für den Schutz des Zugriffs auf den Chip mittels Extended Access Control, einige Länder (u. a. Deutschland und Schweiz) verwenden es auch, um die auf dem Chip gespeicherten Daten mit Passive Authentication zu schützen.[14]
In Deutschland verwendet der neue Personalausweis ebenfalls ECC, sowohl für Extended Access Control als auch für Passive Authentication.[15]
Sony benutzt Elliptic Curve DSA zur digitalen Signierung von Software für die PlayStation 3. Im Jahr 2010 gelang einer Hackergruppe die Ermittlung des benutzten Private Key und somit ein fast vollständiger Bruch der Sicherheitssysteme. Dies war jedoch vor allem auf Implementierungsfehler von Sony zurückzuführen und nutzte keine Sicherheitslücken im verwendeten ECC-Verfahren aus.[16]
Laut der US-amerikanischen National Security Agency (NSA) sind Implementierungen mit Patentproblemen konfrontiert. Vor allem die kanadische Certicom Inc. besitzt demnach mehr als 130 Patente, die für ECC oder Public-Key-Kryptographie benötigt werden. 26 davon wurden von der NSA lizenziert, um ECC-Verfahren zu Zwecken nationaler Sicherheit zu implementieren.[4]
RFC 6090[18] beschreibt grundlegende ECC-Algorithmen, die bereits 1994 oder vorher veröffentlicht wurden (und daher heute keinen Patenten mehr unterliegen können). Die im Internet heute weit verbreiteten ECC-Verfahren basieren auf diesen Algorithmen, so dass sie sich nach Veröffentlichung von RFC 6090 recht unproblematisch durchsetzen konnten.
ANSI X9.62-2005 ist die aktuelle Standardisierung des ECDSA.[19]
ANSI X9.62 (ECDSA)
ANSI X9.63 (Key Agreement und Key Transport)
Die Kurven von X9.62-2005 wurden vom Geheimdienst NSA entworfen und eine Hintertür kann aufgrund der Freiheitsgrade in der Kurvenauswahlmethode nicht ausgeschlossen werden.[20] Nach einer Analyse von Dan Bernstein ist der Beweis für die Zufälligkeit der Kurven, den die Kurvenauswahlmethode nach der Behauptung des Standards darstellt, schlichtweg nicht existent.[21][20]
Die Behauptungen in diesem Absatz sind nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Angaben ohne ausreichenden Beleg könnten demnächst entfernt werden. Bitte hilf Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst.
Für die Einschätzung der Sicherheit dieser Kurven wären wissenschaftliche Quellen erforderlich. Die beiden angegebenen Webseiten stellen nur Behauptungen auf. Troubled @sset 12:18, 23. Nov. 2020 (CET)
Die NIST-Kurven wurden vom Geheimdienst NSA entworfen[23] und basieren auf Grundkonstanten ungeklärter Herkunft, wodurch eine Hintertür nicht ausgeschlossen werden kann.[21] Sie sind auch bezüglich einiger wünschenswerter Eigenschaften nicht sicher.[10]
RFC3279 – Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. April 2002 (englisch).
RFC5480 – Elliptic Curve Cryptography Subject Public Key Information. März 2009 (englisch).
RFC5758 – Internet X.509 Public Key Infrastructure: Additional Algorithms and Identifiers for DSA and ECDSA. Januar 2010 (englisch).
RFC5656 – Elliptic Curve Algorithm Integration in the Secure Shell Transport Layer. Dezember 2009 (englisch).
RFC6239 – Suite B Cryptographic Suites for Secure Shell (SSH). Mai 2011 (englisch).
RFC6594 – Use of the SHA-256 Algorithm with RSA, Digital Signature Algorithm (DSA), and Elliptic Curve DSA (ECDSA) in SSHFP Resource Records. April 2012 (englisch).
RFC5349 – Elliptic Curve Cryptography (ECC) Support for Public Key Cryptography for Initial Authentication in Kerberos (PKINIT). September 2008 (englisch).
Elliptic Curve Private Key Structure, z. B. für PKCS#8
RFC5915 – Elliptic Curve Private Key Structure. Juni 2010 (englisch).
zusätzliche elliptische Kurven für X.509 Zertifikate, IKE, TLS, SSH und S/MIME
RFC5114 – Additional Diffie-Hellman Groups for Use with IETF Standards. Januar 2008 (englisch).
zusätzliche elliptische Kurven für X.509 Zertifikate, IKE, TLS, XML Signaturen und CMS
RFC5639 – Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation. März 2010 (englisch).
Der ECC-Brainpool, eine Arbeitsgruppe des staatlich-industriellen Vereins TeleTrusT (Mitglieder u. a. BKA, BSI) zum Thema Elliptic Curve Cryptography, hat 2005 eine Anzahl von elliptischen Kurven spezifiziert, welche im März 2010 im RFC 5639[27] der IETF standardisiert wurde. Bei diesen Kurven ist besonders die Wahl der Bitlänge 512 zu erwähnen, abweichend zur von vielen anderen Institutionen (z. B. NIST, SECG) präferierten Bitlänge 521.
Der Designraum der Brainpool-Kurven enthält so viele Freiheitsgrade, dass eine Hintertür nicht sicher ausgeschlossen werden kann.[20] Die Brainpool-Kurven sind auch bezüglich einiger wünschenswerter Eigenschaften nicht sicher.[10]
Die „Standards for Efficient Cryptography Group“ (SECG) ist ein 1998 gegründetes Konsortium zur Förderung des Einsatzes von ECC-Algorithmen. SECG hat als erste die 521-Bit-Kurve spezifiziert, die dann vom NIST übernommen wurde. Diese spezielle Wahl beruht auf der Tatsache, dass auf Primzahlen der Form zurückgegriffen werden sollte, um das Rechnen mit Restklassen modulo dieser Primzahl zu beschleunigen. Für ist jedoch nur eine Primzahl.[28]
SECG SEC 2 greift auf die Kurven der NSA aus dem NIST-Standard zurück und übernimmt zusätzlich die nicht zutreffende Behauptung des ANSI-Standards, sie seien verifizierbar zufällig gewählt worden.[21][20]
Das Bundesamt für Sicherheit in der Informationstechnik legt in der Technical Guideline TR-03111 Version 2.0 bzw. 2.1[29] Vorgaben und Empfehlungen für die Implementierung von Elliptische-Kurven-Kryptographie fest. Man beachte jedoch, dass der in der Version 2.0 definierte Algorithmus EC-Schnorr nicht kompatibel zu den in ISO 14888-3 definierten Schnorr-Signaturen EC-SDSA und EC-FSDSA ist.
Das SafeCurves-Projekt von Bernstein hat mit den sicheren, akademischen Kurven Curve25519 (bzw. Ed25519), Ed448-Goldilocks und E-521 inzwischen einen De-facto-Standard geschaffen. Die staatlichen Kurven haben das Vertrauen mancher führenden Kryptographen verloren, da die Kurvenwahl nicht vollständig transparent nachvollziehbar ist[20] und somit eine ähnliche kleptographischeHintertür wie bei Dual EC DRBG oder eine sonstige Hintertür nicht sicher ausgeschlossen werden kann.[30]
↑
Victor S. Miller: Use of Elliptic Curves in Cryptography. In: Advances in Cryptology – CRYPTO ’85 Proceedings (= Lecture Notes in Computer Science). Band218. Springer, 1986, S.417–426, doi:10.1007/3-540-39799-X_31.
↑
Neal Koblitz: Elliptic Curve Cryptosystems. In: Mathematics of Computation. Band48, Nr.177. American Mathematical Society, 1987, S.203–209, JSTOR:2007884.
↑NIST hat nur eine 521-bit Kurve standardisiert und gibt daher als äquivalentes Sicherheitsniveau 521 bit an.
↑R. Szerwinski, T. Güneysu: Exploiting the Power of GPUs for Asymmetric Cryptography. Proceedings of CHES 2008, pp. 79–99, 2008
↑Billy Bob Brumley, Nicola Tuveri: Remote Timing Attacks are Still Practical. In: Cryptology ePrint Archive: Report 2011/232. 11. Mai 2011, abgerufen am 3. November 2011 (englisch, Abruf als PDF möglich).
↑Mozilla CA Certificate Maintenance Policy (Version 2.0). mozilla.org, 4. November 2011, abgerufen am 4. November 2011 (englisch). “We consider the following algorithms and key sizes to be acceptable and supported in Mozilla products: … Elliptic Curve Digital Signature Algorithm (using ANSI X9.62) over SECG and NIST named curves P-256, P-384, and P-512;”
↑Elliptische Kurven. Archiviert vom Original (nicht mehr online verfügbar) am 5. Dezember 2011; abgerufen am 3. November 2011.Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.a-sit.at
↑Zdeněk Říha: Electronic passports. (PDF) JRC Ispra, European Commission, Masaryk University, Brno, 13. September 2008, archiviert vom Original (nicht mehr online verfügbar) am 15. Februar 2010; abgerufen am 3. November 2011 (englisch).
↑Manfred Lochter, Johannes Merkle: Ein neuer Standard für elliptische Kurven. (PDF; 796 kB) Mai 2009, archiviert vom Original am 14. Januar 2018; abgerufen am 14. Januar 2018 (Vortrag auf dem 11. Deutschen IT-Sicherheitskongress 2009).
↑Digital Signature Standard (DSS). (PDF; 1,2 MB) FIPS PUB 186-5. National Institute of Standards and Technology (NIST), Februar 2023, abgerufen am 3. Oktober 2023 (englisch). (ECDSA).
↑Information technology – Security techniques – Cryptographic techniques based on elliptic curves. ISO/IEC, abgerufen am 3. November 2011 (englisch, Kostenpflichtiger PDF-Abruf). “ISO/IEC 15946 specifies public-key cryptographic techniques based on elliptic curves. It consists of five parts and includes the establishment of keys for symmetric cryptographic techniques, and digital signature mechanisms (Part 15946-2 was revoked in 2007, and replaced by 14888-8).”
↑Standard Specifications For Public-Key Cryptography. The IEEE P1363 project develops Standard Specifications For Public-Key Cryptography, towards the goal of issuing a series of IEEE standards documents. IEEE, 10. Oktober 2008, archiviert vom Original (nicht mehr online verfügbar) am 1. November 2011; abgerufen am 3. November 2011 (englisch).Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/grouper.ieee.org
↑RFC5639 – Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation. März 2010 (englisch).