Der Fuhrmann-Kreis, benannt nach Wilhelm Fuhrmann (1833–1904), ist ein spezieller Kreis am Dreieck. Für ein gegebenes Dreieck mit Nagel-Punkt und Höhenschnittpunkt kann man den Fuhrmann-Kreis als denjenigen Kreis definieren, der die Strecke als Durchmesser besitzt. Der so definierte Kreis ist identisch mit dem Umkreis des zum gegebenen Dreieck gehörenden Fuhrmann-Dreiecks.
Der Radius des Fuhrmann-Kreises entspricht dem Abstand der Mittelpunkte von Inkreis und Umkreis des gegebenen Dreiecks. Mit dem Satz von Euler ergibt sich hiermit:
Hierbei bezeichnet den Radius des Umkreises und den Radius des Inkreises.
Der Fuhrmann-Kreis schneidet die Höhen des Dreiecks neben dem gemeinsamen Höhenschnittpunkt jeweils in einem weiteren Punkt. Jeder dieser Punkte besitzt den Abstand vom zugehörigen Eckpunkt (siehe Zeichnung). Da der Fuhrmann-Kreis mit diesen drei Punkten zusammen mit dem Nagel-Punkt, dem Höhenschnittpunkt und den Eckpunkten des Fuhrmann-Dreiecks insgesamt acht besondere Punkte besitzt, wird er manchmal auch als Acht-Punkte-Kreis bezeichnet.