Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Graphes de Behrend

From Wikipedia (Fr) - Reading time: 2 min

Les graphes de Behrend sont des graphes ayant la propriété suivante : toutes leurs arêtes appartiennent à un et un seul triangle. Ils sont basés sur les ensembles d'entiers ne contenant aucune progression arithmétique.

Définition

[modifier | modifier le code]

Soit [m] l'ensemble des entiers de 1 à m. Soit X un sous-ensemble de [m] ne contenant pas trois nombres en progression arithmétique. Autrement dit, pour tout i,j,k distincts dans X, on ne peut avoir j-i = k-j (autrement formulé, on ne peut avoir i+k=2j.)

On définit alors le graphe suivant :

  1. Il contient 6m sommets.
  2. Ces sommets sont répartis en trois ensemble de respectivement m,2m et 3m sommets, que nous noterons V1,V2 et V3, et numérotés respectivement de 1 à m, de 1 à 2m et de 1 à 3m.
  3. Pour tous sommets de x de V1 et y de V2, il y a une arête de x à y si et seulement si y-x est dans X. De même entre les sommets de V2 et ceux de V3. Entre un sommet x de V1 et un sommet z de V3, il y a une arête si et seulement si z-x est dans X.

Le graphe a alors les propriétés suivantes :

  1. Il contient 3|X|m arêtes
  2. Il contient |X|m triangles
  3. Chaque arête appartient à un et un seul triangle.

Notes et références

[modifier | modifier le code]

Licensed under CC BY-SA 3.0 | Source: https://fr.wikipedia.org/wiki/Graphes_de_Behrend
2 views |
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF