En mathématiques, grand nombre n'a pas de sens bien défini[1] : d'une part, l'« ensemble des grands nombres entiers » admettrait un plus petit élément, créant un paradoxe analogue à celui du paradoxe des nombres intéressants ; d'autre part, tout « grand nombre » N est ridiculement petit devant, par exemple, 2N. Ces deux remarques banales ont cependant pu être exploitées pour donner naissance, la première, à celle d'entier non standard, la seconde, à la notion d'entier inaccessible[2].
Quelques grands nombres finis (classés par ordre de grandeur)
, le plus grand nombre accepté en lexicographie dans le système des puissances de dix, est le centillion[réf. souhaitée], utilisé pour la première fois en 1952. Il s'agit de la 100e puissance d'un million, soit 1 suivi de 600 zéros.
La fonction d'Ackermann est connue pour générer de très grands nombres à partir du moment où les arguments sont assez grands. Ainsi, A(4,4) est déjà immensément plus grand que tous les nombres précédents.
Il est facile de créer des nombres encore plus grands ; un exemple est A(g64,g64) (écrit par xkcd « simplement pour horrifier les mathématiciens »[3])
Cependant, ce dernier nombre est en fait lui aussi plus petit que , lui-même immensément plus petit que .
D'autres exemples sont donnés dans l'article Ordres de grandeur de nombres ; l'article Hiérarchie de croissance rapide donne des moyens de construction de nombres (finis) dépassant toutes les notations précédemment mentionnées. Voir enfin l’article Nombre de Rayo pour une description d’un nombre bien plus grand encore.
En théorie des ensembles on définit des nombres infinis, appelés nombres ordinaux, qui prolongent en l'incluant la suite des entiers naturels. L'idée est qu'un ordinal est l'ensemble de ses prédécesseurs, ainsi le plus petit ordinal infini est l'ensemble des ordinaux finis c'est-à-dire l'ensemble N des entiers naturels. Le processus de construction continue indéfiniment et par exemple le deuxième ordinal infini comporte tous les entiers plus N. Parmi ces nombres ordinaux, qui cernent la notion de bon ordre, on définit des nombres dits cardinaux, qui eux, cernent la notion intuitive de nombre d'éléments. Parmi ces nombres cardinaux, certains particulièrement grands sont justement appelés grands cardinaux et cardinaux inaccessibles.
↑Alain Bouvier, Michel George, François Le Lionnais, Dictionnaire des mathématiques, 7e édition, Quadrige/Puf, 2005, p.386.
↑Émile Borel, Les nombres inaccessibles (lire en ligne) : Borel y remarque qu'on ne peut décrire dans l'univers physique (avec un nombre limité de symboles) qu'un nombre fini d'entiers ; les autres (en nombre infini) resteront donc à jamais individuellement indescriptibles.