Dans la théorie des probabilités et en statistiques, la loi log-logistique (connue aussi comme la distribution de Fisk en économie) est une loi de probabilité continue pour une variable aléatoire strictement positive. Elle est utilisée dans l'étude de la durée de vie d'événement dont l'intensité augmente d'abord pour ensuite décroître, comme pour la mortalité dû au cancer après diagnostic ou traitement. Elle est aussi utilisée en hydrologie pour modéliser le débit d'un cours d'eau ou le niveau des précipitations, et en économie pour modéliser l'inégalité des revenus.
Il existe différentes paramétrisations de la distribution. Celle choisie ici permet une interprétation raisonnable des paramètres et permet une expression simplifiée pour la fonction de répartition[1],[2].
Le paramètre α > 0 est un paramètre d'échelle et joue aussi le rôle de médiane de la distribution. Le paramètre β > 0 est un paramètre de forme. La distribution est unimodale lorsque β > 1 et sa dispersion décroît lorsque β augmente.
Les expressions explicites de la kurtosis et du skewness sont plus longues à reproduire[5].
Lorsque β tend vers l'infini, la moyenne (espérance) tend vers α, la variance et le skewness tendent tous deux vers 0 et la kurtosis tend vers 6/5 (voir aussi #Distributions associées ci-dessous).
La distribution log-logistique procure un modèle paramétrique pour l'analyse de survie (durée de vie). Contrairement à l'habituelle distribution de Weibull, cette densité permet une fonction de risque (défaillance) non monotone : lorsque β > 1, la fonction de risque est unimodale (lorsque β ≤ 1, le risque décroît de manière monotone). Le fait de disposer d'une expression explicite pour la fonction de répartition est un avantage pour l'analyse de survie avec des données tronquées (ou censurées)[6].
Si X a une distribution log-logistique avec pour paramètre d'échelle α et pour paramètre de forme β alors Y = log(X) est distribué selon une loi logistique, avec pour paramètre de position log(α) et pour paramètre d'échelle 1/β.
Lorsque le paramètre de forme β augmente, la distribution log-logistique s'approche de plus en plus d'une distribution logistique. Ou, de manière informelle, lorsque ,
.
La distribution log-logistique LL(β = 1, α) est identique à une distribution de Pareto généralisée, de paramètre de position , de paramètre de forme et de paramètre d'échelle α :
.
Cette section est vide, insuffisamment détaillée ou incomplète. Votre aide est la bienvenue ! Comment faire ?
↑(en) M. M. Shoukri, I. U. M. Mian et D. S. Tracy, « Sampling Properties of Estimators of the Log-Logistic Distribution with Application to Canadian Precipitation Data », The Canadian Journal of Statistics, vol. 16, no 3, , p. 223-236 (JSTOR3314729).
↑(en) Fahim Ashkar et Smail Mahdi, « Fitting the log-logistic distribution by generalized moments », Journal of Hydrology, vol. 328, , p. 694-703 (DOI10.1016/j.jhydrol.2006.01.014).
↑(en) Pandu R. Tadikamalla et Norman L. Johnson, « Systems of Frequency Curves Generated by Transformations of Logistic Variables », Biometrika, vol. 69, no 2, , p. 461-465 (JSTOR2335422).