在數學 中,負二 是距離原點 兩個單位的負整數 [ 1] ,记作−2 [ 2] 或− 2[ 3] ,是2 的加法逆元 或相反數 ,介於−3 與−1 之間,亦是最大的負偶數。除了少數探討整環 質元素 的情況外[ 4] ,一般不會將負二視為質數 [ 5] 。
負二有時會做為冪次表達平方倒數,用於國際單位制 基本單位的表示法中,如m s-2 [ 6] 。此外,在部份領域如軟體設計 ,負一 通常會作為函數的無效回傳值[ 7] ,類似地負二有時也會用於表達除負一外的其他無效情況[ 8] ,例如在整數數列線上大全 中,負一作為不存在、負二作為此解是无穷[ 9] [ 10] 。
負二為第二大的負整數[ 11] [ 12] 。最大的負整數為負一 。因此部分量表會使用負二作為僅次於負一的分數或權重。[ 13]
負二為負數中最大的偶數,同時也是負數中最大的單偶數 。
負二為格萊舍χ數(OEIS 數列A002171 )[ 14]
負二為第6個擴充貝爾數[ 15] (complementary Bell number,或稱Rao Uppuluri-Carpenter numbers )(OEIS 數列A000587 ),前一個是1後一個是-9。[ 16]
負二為最大的殭屍數[ 17] ,即位數和(首位含負號)的平方與自身的和大於零的負數[ 17] 。前一個為-3(OEIS 數列A328933 )。所有負數中,只有26個整數有此種性質[ 17] 。
負二為最大能使
tan
n
>
|
n
|
{\displaystyle \tan n>\left|n\right|}
的負整數[ 18] 。
負二能使二次域
Q
[
d
]
{\displaystyle \mathbb {Q} [{\sqrt {d}}]}
的類数 為1,亦即其整數環 為唯一分解整環 [ 註 1] [ 19] 。而根據史塔克-黑格纳理論 ,有此性質的負數只有9個[ 20] [ 21] [ 22] ,其對應的自然數稱為黑格纳数 [ 23] 。
此外負二也能使二次域
Q
[
d
]
{\displaystyle \mathbb {Q} [{\sqrt {d}}]}
成為簡單歐幾里得整環(simply Euclidean fields,或稱歐幾里得範數整環,Norm-Euclidean fields)[ 24] 。有此性質的負數只有-11, -7, -3, -2, -1(OEIS 數列A048981 )[ 25] 。若放寬條件,則負十五也能列入[ 26] [ 27] 。
負二為從1開始使用加法、減法或乘法在2步內無法達到的最大負數[ 28] 。1步內無法達到的最大負數是負一、3步內無法達到的最大負數是負四(OEIS 數列A229686 )[ 28] 。這個問題為直線問題 與加法、減法和乘法的結合[ 29] ,其透過整數的運算難度對NP = P與否在代數上進行探討[ 30] 。
負二為2階的埃尔米特数 [ 31] ,即
H
2
=
H
2
(
0
)
=
−
2
{\displaystyle H_{2}=H_{2}(0)=-2\,}
[ 32] 。
2
!
−
2
2
=
−
2
{\displaystyle {{2!}-{{2}^{2}}}=-2}
[ 34] ,同時滿足
|
n
|
!
−
n
2
=
n
{\displaystyle \left|n\right|!-n^{2}=n}
,即
|
−
2
|
!
−
(
−
2
)
2
=
−
2
{\displaystyle \left|-2\right|!-(-2)^{2}=-2}
。此外,
n
!
−
2
n
{\displaystyle n!-2^{n}}
當
n
{\displaystyle n}
為2和3時結果也為負二[ 35] 。
負二能使k(k+1)(k+2)為三角形數[ 36] 。所有整數只有9個數有此種性質[ 37] ,而負二是有此種性質的最小整數。這9個整數分別為-2, -1, 0, 1, 4, 5, 9, 56和636(OEIS 數列A165519 )[ 37] 。
負二為立方體 下闭集合 中欧拉示性数 的最小值[ 38] 。
負二的擁有的因數若負因數也列入計算則與二的因數(含負因數)相同,為-2、-1、1、2。根據定義一般不對負數進行質因數分解,雖然能將
−
1
{\displaystyle -1}
提出來[ 39] 計為
−
1
×
2
{\displaystyle -1\times 2}
,因此2可以視為負二的質因數 ,但不能作為負二的質因數分解結果。雖然不能對負二進行整數分解,由於負二是一個高斯整數 ,因此可以對負二進行高斯整數分解,結果為
i
×
(
1
+
i
)
2
{\displaystyle i\times (1+i)^{2}}
,其中
1
+
i
{\displaystyle 1+i}
為高斯質數 [ 40] 、
i
{\displaystyle i}
為虛數單位 。
負二的冪
(
−
2
)
x
{\displaystyle (-2)^{x}}
示意圖
一個可以代表負二的冪
(
−
2
)
x
{\displaystyle (-2)^{x}}
主值的
圖形 ,藍色是
實數 部、橘色是
虛數 部、橫軸為
x
{\displaystyle x}
、縱軸為
(
−
2
)
x
{\displaystyle (-2)^{x}}
。只有在
x
{\displaystyle x}
為整數時
(
−
2
)
x
{\displaystyle (-2)^{x}}
為實數
負二的前幾次冪為 -2、4、-8、16、-32、64、-128 (OEIS 數列A122803 )正負震盪[ 41] ,其中正的部分為四的冪、負的部分與四的冪差負二倍[ 42] ,因此這種特性使得負二成為作為底數可以不使用負號、二補數 等輔助方式表示全體實數的最大負數[ 41] [ 43] [ 44] [ 45] ,並在1957年間有部分計算機採用負二為底之進位制的數字運算進行設計[ 46] ,類似地,使用2i則能表達複數[ 47] 。
負二的冪之和是一個发散几何级数 。雖然其結果發散,但仍可以求得其廣義之和,其值為1 / 3 [ 48] [ 49] 。
∑
k
=
0
n
(
−
2
)
k
{\displaystyle \sum _{k=0}^{n}(-2)^{k}}
= 1 − 2 + 4 − 8 + …
若考慮几何级数 的計算公式,則有[ 50] :
∑
k
=
0
∞
a
r
k
=
a
1
−
r
.
{\displaystyle \sum _{k=0}^{\infty }ar^{k}={\frac {a}{1-r}}.}
在首項a = 1且公比r = −2時,上述公式的結果為1 / 3 。然而這個級數應為發散級數,其前幾項的和為[ 51] :
1, -1, 3, -5, 11, -21, 43, -85, 171, -341....(OEIS 數列A077925 )
這個級數雖然發散,然而歐拉對這個級數的結果給出了一個值,即1 / 3 [ 52] ,而這個和稱為歐拉之和 [ 53] 。
數的負二次冪
x
−
2
{\displaystyle x^{-2}}
示意圖
一個可以代表數的負二次冪
x
−
2
{\displaystyle x^{-2}}
的
函數圖形 。數的負二次冪亦可以用平方倒數來表示,即
x
−
2
=
1
x
2
{\displaystyle x^{-2}={\frac {1}{x^{2}}}}
若一數的冪為負二次,則其可以視為平方的倒數,這個部分用於函數也適用[ 54] ,而日常生活中偶爾會用于表示不帶除號的單位,如加速度一般計為m/s2 ,而在國際單位制 基本單位的表示法中也可以計為 m s-2 [ 6] 。
而平方倒數中較常討論的議題包括對任意實數
n
{\displaystyle n}
而言,其平方倒數
n
−
2
{\displaystyle n^{-2}}
結果恆正、平方反比定律 [ 56] 、网格湍流衰減[ 57] 以及巴塞尔问题 [ 58] 。其中巴塞尔问题指的是自然數的負二次方和(平方倒數和)會收斂並趨近於
π
2
6
{\textstyle {\frac {\pi ^{2}}{6}}}
,即[ 59] [ 58] :
∑
n
=
1
∞
n
−
2
=
1
−
2
+
2
−
2
+
3
−
2
+
⋯
=
1
1
2
+
1
2
2
+
1
3
2
+
⋯
=
π
2
6
{\displaystyle \sum _{n=1}^{\infty }{n^{-2}}={1^{-2}}+{2^{-2}}+{3^{-2}}+\cdots ={1 \over 1^{2}}+{1 \over 2^{2}}+{1 \over 3^{2}}+\cdots ={\pi ^{2} \over 6}}
而這個值與黎曼ζ函數代入2的結果相同[ 60] [ 61] 。
對任意實數而言,平方倒數的結果恆正。例如負二的平方倒數為四分之一。前幾個自然數 的平方倒數為:
平方倒數
1
2
3
4
5
6
7
8
9
10
x
−
2
{\displaystyle x^{-2}}
1
1
4
{\displaystyle {\frac {1}{4}}}
1
9
{\displaystyle {\frac {1}{9}}}
1
16
{\displaystyle {\frac {1}{16}}}
1
25
{\displaystyle {\frac {1}{25}}}
1
36
{\displaystyle {\frac {1}{36}}}
1
49
{\displaystyle {\frac {1}{49}}}
1
64
{\displaystyle {\frac {1}{64}}}
1
81
{\displaystyle {\frac {1}{81}}}
1
100
{\displaystyle {\frac {1}{100}}}
1
0.25
0.
1
¯
{\displaystyle 0.{\overline {1}}}
0.0625
0.04
0.0
27
¯
{\displaystyle 0.0{\overline {27}}}
0.0204081632....[ 註 3]
0.015625
0.0
1
¯
2345679
0
¯
{\displaystyle 0.0{\overline {1}}2345679{\overline {0}}}
0.01
負二的平方根在定義虛數單位
i
{\displaystyle i}
滿足
i
2
=
−
1
{\displaystyle {{i}^{2}}=-1}
後可透過等式
−
x
=
±
i
x
{\displaystyle {\sqrt {-x}}=\pm i{\sqrt {x}}}
得出,而對負二而言,則為
−
2
=
±
i
2
{\displaystyle {\sqrt {-2}}=\pm i{\sqrt {2}}}
[ 註 4] [ 62] [ 64] [ 65] [ 66] 。而負二平方根的主值為
i
2
{\displaystyle i{\sqrt {2}}}
[ 註 5] 。
負二通常以在2前方加入負號表示[ 67] ,通常稱為「負二」或大寫「負貳」,但不應讀作「減二」[ 68] ,而在某些場合中,會以「零下二」[ 69] [ 70] 表達-2,例如在表達溫度時[ 71] 。
在二進制時,尤其是計算機運算,負數的表示通常會以二補數 來表示[ 72] ,即將所有位數填上1,再向下減。此時,負二計為「......11111110(2) 」,更具體的,4位元整數負二計為「1110(2) 」;8位元整數負二計為「11111110(2) 」;16位元整數負二計為「1111111111111110(2) 」[ 73] 而在使用負號的表示法中,負二計為「-10(2) 」[ 74] 。
正負二(
±
2
{\displaystyle \pm 2}
)是透過正負號 表達正二與負二的方式,其可以用來表示4的平方根或二次方程
x
2
=
4
{\displaystyle x^{2}=4}
的解,即
4
=
±
2
{\displaystyle {\sqrt {4}}=\pm {2}}
。正負二比負二更常出現於文化中,例如一些音樂創作[ 79] 或者紀錄片《±2℃ 》講述全球氣溫提升或降低兩度對環境可能造成的影響[ 80] [ 81] 。
^ 當d<0時,若
Q
[
d
]
{\displaystyle \mathbb {Q} [{\sqrt {d}}]}
的整數環為唯一分解整環,就表示
Q
[
d
]
{\displaystyle \mathbb {Q} [{\sqrt {d}}]}
的數字都只有一種因數分解方式,例如
Q
[
−
5
]
{\displaystyle \mathbb {Q} [{\sqrt {-5}}]}
的整數環不是唯一分解整環,因為6可以以兩種方式在
Z
[
−
5
]
{\displaystyle \mathbb {Z} [{\sqrt {-5}}]}
中表成整數乘積:
2
×
3
{\displaystyle 2\times 3}
和
(
1
+
−
5
)
(
1
−
−
5
)
{\displaystyle (1+{\sqrt {-5}})(1-{\sqrt {-5}})}
。
^ 此指埃尔米特多项式 的费马伪素数
^ 7的平方倒數之循環節 有42位,0.0204081632 6530612244 8979591836 7346938775 51 ... 參閱49的倒數
^ 4.0 4.1 bi-imaginary number system
⟨
R
,
Z
R
⟩
{\displaystyle \left\langle {\sqrt {R}},Z_{R}\right\rangle }
中,
R
{\displaystyle R}
為負二、
Z
R
{\displaystyle Z_{R}}
為二的情況
⟨
±
i
2
,
Z
2
⟩
{\displaystyle \left\langle \pm \mathrm {i} {\sqrt {2}},Z_{2}\right\rangle }
[ 62]
^ 平方根的主值即
−
x
=
±
i
x
{\displaystyle {\sqrt {-x}}=\pm i{\sqrt {x}}}
取正的值,對於負二而言,即
−
2
=
i
2
{\displaystyle {\sqrt {-2}}=i{\sqrt {2}}}
[ 註 4] [ 62] [ 64] [ 65] [ 66]
^ Catherine V. Jeremko. Just in time math (PDF) . LearningExpress, LLC, New York. 2003: 20 [2020-03-26 ] . ISBN 1-57685-506-6 . (原始内容存档 (PDF) 于2020-03-26).
^ Runesson Kempe, Ulla, Anna Lövström, and Björn Hellquist. Beyond the borders of the local: How “instructional products” from learning study can be shared and enhance student learning. International Journal for Lesson and Learning Studies (Emerald Group Publishing Limited). 2018, 7 (2): 111––123.
^ Rick Billstein, Shlomo Libeskind, and Johnny W. Lott. A Problem Solving Approach to Mathematics for Elementary School Teachers. Pearson Education, Inc. 2010: 250.
^ Sloane, N.J.A. (编). Sequence A061019 (Negate primes in factorization of n.) . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
^ Can negative numbers be prime? . primes.utm.edu. [2020-03-14 ] . (原始内容存档 于2018-01-23).
^ 6.0 6.1 International Bureau of Weights and Measures , The International System of Units (SI) (PDF) 8th, 2006, ISBN 92-822-2213-6 (英语)
^ Knuth, Donald . The Art of Computer Programming, Volume 1: Fundamental Algorithms (second edition) . Addison-Wesley . 1973: 213 –214, also p. 631. ISBN 0-201-03809-9 . (原始内容存档 于2019-04-03).
^ Yan, Michael and Leung, Eric and Han, Binna, The Joy Of Engineering (PDF) , 2011-12 [2020-03-21 ] , (原始内容存档 (PDF) 于2020-03-21)
^ Sloane, N.J.A. (编). Sequence A164793 (smallest number which has in its English name the letter "i" in the n-th position, -1 if such number no exist, -2 for infinite) . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
^ Sloane, N.J.A. (编). Sequence A164805 . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
^ Horwitz, Kenneth. Extending Fraction Placement from Segments to a Number Line. Children’s Reasoning While Building Fraction Ideas (Springer). 2017: 193––200.
^ Haag, VH; et al, Introduction to Algebra (Part 2), ERIC, 1960
^ aillon, L and Poon, Chi-Sun and Chiang, YH. Quantifying the waste reduction potential of using prefabrication in building construction in Hong Kong. Waste management (Elsevier). 2009, 29 (1): 309––320.
^ Sloane, N.J.A. (编). Sequence A002171 (Glaisher's chi numbers) . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
^ Weisstein, Eric W. (编). Complementary Bell Number . at MathWorld --A Wolfram Web Resource. Wolfram Research, Inc. [2020-03-12 ] (英语) .
^ Amdeberhan, Tewodros and De Angelis, Valerio and Moll, Victor H. Complementary Bell numbers: Arithmetical properties and Wilf’s conjecture. Advances in Combinatorics (Springer). 2013: 23––56.
^ 17.0 17.1 17.2 Sloane, N.J.A. (编). Sequence A328933 (Zombie Numbers) . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
^ Sloane, N.J.A. (编). Sequence A088306 (Integers n with tan n > |n|) . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
^ Hardy, Godfrey Harold ; Wright, E. M., An introduction to the theory of numbers Fifth, The Clarendon Press Oxford University Press: 213, 1979 [1938], ISBN 978-0-19-853171-5 , MR 0568909
^ Conway, John Horton ; Guy, Richard K. The Book of Numbers . Springer. 1996: 224 . ISBN 0-387-97993-X .
^ H.M. Stark. On the “gap” in a theorem of Heegner . Journal of Number Theory. 1969-01, 1 (1): 16–27 [2020-06-19 ] . doi:10.1016/0022-314X(69)90023-7 . (原始内容存档 于2020-06-28) (英语) .
^ Weisstein, Eric W. (编). Heegner Number . at MathWorld --A Wolfram Web Resource. Wolfram Research, Inc. [2020-03-14 ] (英语) .
^ Sloane, N.J.A. (编). Sequence A003173 (Heegner numbers: imaginary quadratic fields with unique factorization (or class number 1).) . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
^ Kyle Bradford and Eugen J. Ionascu, Unit Fractions in Norm-Euclidean Rings of Integers , arXiv, 2014 [2020-03-26 ] , (原始内容存档 于2020-03-26)
^ LeVeque, William J. Topics in Number Theory, Volumes I and II . New York: Dover Publications. 2002: II:57,81 [1956]. ISBN 978-0-486-42539-9 . Zbl 1009.11001 .
^ Kelly Emmrich and Clark Lyons. Norm-Euclidean Ideals in Galois Cubic Fields (PDF) . 2017 West Coast Number Theory Conference. 2017-12-18 [2020-03-26 ] . (原始内容存档 (PDF) 于2020-03-26).
^ Sloane, N.J.A. (编). Sequence A296818 (Squarefree values of n for which the quadratic field Q[ sqrt(n) ] possesses a norm-Euclidean ideal class.) . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
^ 28.0 28.1 Sloane, N.J.A. (编). Sequence A229686 (The negative number of minimum absolute value not obtainable from 1 in n steps using addition, multiplication, and subtraction.) . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
^ Koiran, Pascal. Valiant’s model and the cost of computing integers. computational complexity (Springer). 2005, 13 (3-4): 131––146.
^ Shub, Michael and Smale, Steve. On the intractability of Hilbert’s Nullstellensatz and an algebraic version of “NP= P?”. Duke Mathematical Journal. 1995, 81 (1): pp. 47-54.
^ Sloane, N.J.A. (编). Sequence A067994 (Hermite numbers) . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
^ pahio. Hermite numbers . planetmath.org. 2013-03-22 [2020-03-14 ] . (原始内容存档 于2015-09-19).
^ Weisstein, Eric W. (编). Hermite Number . at MathWorld --A Wolfram Web Resource. Wolfram Research, Inc. [2020-03-12 ] (英语) .
^ Sloane, N.J.A. (编). Sequence A005008 . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
^ Sloane, N.J.A. (编). Sequence A123642 . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
^ Richard K. Guy. "Figurate Numbers", §D3 in Unsolved Problems in Number Theory,. Problem Books in Mathematics 2nd ed. New York: Springer-Verlag. 1994: 148. ISBN 978-0387208602 .
^ 37.0 37.1 Sloane, N.J.A. (编). Sequence A165519 (Integers k for which k(k+1)(k+2) is a triangular number.) . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
^ Sloane, N.J.A. (编). Sequence A214283 (Smallest Euler characteristic of a downset on an n-dimensional cube) . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
^ Bard, G.V. Sage for Undergraduates. American Mathematical Society. 2015: 269. ISBN 9781470411114 . LCCN 14033572 .
^ Dresden, Greg; Dymàček, Wayne M. Finding Factors of Factor Rings over the Gaussian Integers. The American Mathematical Monthly. 2005-08-01, 112 (7): 602. doi:10.2307/30037545 .
^ 41.0 41.1 CHAUNCEY H. WELLS. Using a negative base for number notation . The Mathematics Teacher (National Council of Teachers of Mathematics). 1963, 56 (2): 91––93. ISSN 0025-5769 .
^ Sloane, N.J.A. (编). Sequence A004171 . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
^ Knuth, Donald, The Art of Computer Programming , Volume 2 3rd: 204–205, 1998 . Knuth mentions both negabinary and negadecimal.
^ The negaternary system is discussed briefly in Marko Petkovsek. Ambiguous Numbers are Dense . The American Mathematical Monthly. 1990-05, 97 (5): 408 [2020-06-19 ] . doi:10.2307/2324393 . (原始内容存档 于2020-06-10).
^ Sloane, N.J.A. (编). Sequence A122803 (Powers of -2) . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
^ Marczynski, R. W., "The First Seven Years of Polish Computing" (页面存档备份 ,存于互联网档案馆 ), IEEE Annals of the History of Computing, Vol. 2, No 1, January 1980
^ Robert Braunwart. Negative and Imaginary Radices . School Science and Mathematics. 1965-04, 65 (4): 292–295 [2022-06-23 ] . doi:10.1111/j.1949-8594.1965.tb13422.x . (原始内容存档 于2022-06-27) (英语) .
^ Leibniz, Gottfried . Probst, S.; Knobloch, E.; Gädeke, N. , 编. Sämtliche Schriften und Briefe, Reihe 7, Band 3: 1672–1676: Differenzen, Folgen, Reihen . Akademie Verlag. 2003: pp.205–207 [2020-03-20 ] . ISBN 3-05-004003-3 . (原始内容 存档于2013-10-17).
^ Eberhard Knobloch. Beyond Cartesian limits: Leibniz's passage from algebraic to “transcendental” mathematics . Historia Mathematica. 2006-02, 33 (1): 113–131 [2020-06-19 ] . doi:10.1016/j.hm.2004.02.001 . (原始内容存档 于2019-10-14) (英语) .
^ Weisstein, Eric W. (编). Geometric Series . at MathWorld --A Wolfram Web Resource. Wolfram Research, Inc. [2020-03-21 ] (英语) .
^ Sloane, N.J.A. (编). Sequence A077925 . The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
^ Euler, Leonhard . Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum . 1755: 234 [2020-03-20 ] . (原始内容存档 于2008-02-25).
^ Korevaar, Jacob. Tauberian Theory: A Century of Developments . Springer. 2004: 325 . ISBN 3-540-21058-X .
^ 孙长军. 负二次幂函数与排列数的交错级数型线性微分方程. 山东理工大学学报(自然科学版) (连云港职业技术学院数学教研室). 2004, 05期 .
^ Alexandre Koyré. An Unpublished Letter of Robert Hooke to Isaac Newton . Isis. 1952-12, 43 (4): 312–337 [2020-06-19 ] . ISSN 0021-1753 . doi:10.1086/348155 (英语) .
^ Hooke's letter to Newton of 6 Jan. 1680 (Koyré 1952:332)[ 55]
^ 中国近代航空工业史(1909-1949) . 中国航空工业史丛书: 总史. 航空工业出版社. 2013 [2020-03-22 ] . ISBN 9787516502617 . LCCN 2019437836 . (原始内容存档 于2020-11-30).
^ 58.0 58.1 Havil, J. Gamma: Exploring Euler's Constant . Princeton, New Jersey: Princeton University Press. 2003: 37 –42 (Chapter 4). ISBN 0-691-09983-9 .
^ Evaluating ζ (2) (PDF) . secamlocal.ex.ac.uk. [2020-03-21 ] . (原始内容存档 (PDF) 于2007-06-29).
^ 許志農. 休閒數學的濫觴⋯中國的洛書 (PDF) . lungteng.com.tw. [2020-03-21 ] . (原始内容存档 (PDF) 于2020-03-21).
^ 御坂01034. 巴塞尔问题(Basel problem)的多种解法 . [2020-03-21 ] . (原始内容存档 于2019-05-02).
^ 62.0 62.1 62.2 Knuth, D.E. (1960). "bi-imaginary number system"[ 63] . Communications of the ACM. 3 (4): 247.
^ Donald E. Knuth. A imaginary number system . Communications of the ACM. 1960-04-01, 3 (4): 245–247 [2020-06-19 ] . doi:10.1145/367177.367233 .
^ 64.0 64.1 Knuth, Donald . Positional Number Systems. The art of computer programming. Volume 2 3rd. Boston: Addison-Wesley. 1998: 205. ISBN 0-201-89684-2 . OCLC 48246681 .
^ 65.0 65.1 Slekys, Arunas G and Avižienis, Algirdas. A modified bi-imaginary number system. 1978 IEEE 4th Symposium onomputer Arithmetic (ARITH) (IEEE). 1978: 48––55.
^ 66.0 66.1 Slekys, Arunas George, Design of complex number digital arithmetic units based on a modified bi-imaginary number system., University of California, Los Angeles, 1976
^ Kreith, Kurt and Mendle, Al. Toward A Coherent Treatment of Negative Numbers. Journal of Mathematics Education at Teachers College. 2013, 4 (1): 53.
^ Walter Noll, Mathematics should not be boring (PDF) , CMU Math - Carnegie Mellon University: 13, 2003-03 [2020-03-26 ] , (原始内容存档 (PDF) 于2016-03-22)
^ Tussy, A.S. and Koenig, D. Prealgebra. Cengage Learning. 2014: 136. ISBN 9781285966052 .
^ Bofferding, L.C. and Murata, A. and Goldman, S.V. and Okamoto, Y. and Schwartz, D. and Stanford University. School of Education. Expanding the Numerical Central Conceptual Structure: First Graders' Understanding of Integers. Stanford University. 2011: 169.
^ 最冷情人節 酷寒襲芝 創77年低溫紀錄 . 世界日報 . 2020-02-14. 溫度降到華氏零下2度 [失效連結 ]
^ E.g. Section 4.2.1 in Intel 64 and IA-32 Architectures Software Developer's Manual, Signed integers are two's complement binary values that can be used to represent both positive and negative integer values., Volume 1: Basic Architecture, 2006-11
^ 3.9. Two's Complement . Chapter 3. Data Representation. cs.uwm.edu. 2012-12-03 [2014-06-22 ] . (原始内容存档 于2020-11-30).
^ David J. Lilja and Sachin S. Sapatnekar, Designing Digital Computer Systems with Verilog , Cambridge University Press, 2005 online (页面存档备份 ,存于互联网档案馆 )
^ Abigail Beall. A guide to planet-spotting . New Scientist. 2019-10, 244 (3253): 51 [2020-06-19 ] . doi:10.1016/S0262-4079(19)32025-1 (英语) .
^ A. Mallama, J.L. Hilton. Computing apparent planetary magnitudes for The Astronomical Almanac . Astronomy and Computing. 2018-10, 25 : 10–24 [2020-06-19 ] . doi:10.1016/j.ascom.2018.08.002 . (原始内容存档 于2020-06-15) (英语) .
^ Current Time Zone . Brazil Considers Having Only One Time Zone. Time and Date. 2009-07-21 [2012-07-14 ] . (原始内容存档 于2012-07-12).
^ Macintyre, Jane E. (1994). Dictionary of Inorganic Compounds, Supplement 2 (页面存档备份 ,存于互联网档案馆 ). CRC Press. pp 25. ISBN 9780412491009 .
^ Pace, Ian. Positive or negative 2. The Musical Times (JSTOR). 1998, 139 (1860): 4––15.
^ 湯佳玲、劉力仁、陳珮伶. 正負2度C數據解讀錯誤 學者不背書 . 自由時報 . 2010-03-04 [2010-03-06 ] . (原始内容存档 于2010-03-07) (中文(臺灣)) .
^ 朱立群. 環團科學舉證 ±2℃內容有誤 . 中國時報 . 2010-03-03 [2010-03-06 ] . (原始内容 存档于2014-10-26) (中文(臺灣)) .