ANOVA stands for Analysis of Variance. ANOVA is a family of multivariate statistical technique for helping to infer whether there are real differences between the means of three or more groups or variables in a population, based on sample data. Before tackling this topic, you should be familiar with normal distribution and testing differences. |
The main types of ANOVA are listed below. They are all part of the general linear model.
ANOVA models | Definitions |
---|---|
t-tests | Comparison of means between two groups; if independent groups, then independent samples t-test. If not independent, then paired samples t-test. If comparing one group against a fixed value, then a one-sample t-test. |
One-way ANOVA | Comparison of means of three or more independent groups. |
One-way repeated measures ANOVA | Comparison of means of three or more within-subject variables. |
Factorial ANOVA | Comparison of cell means for two or more between-subject IVs. |
Mixed ANOVA (SPANOVA) |
Comparison of cells means for one or more between-subjects IV and one or more within-subjects IV. |
ANCOVA | Any ANOVA model with a covariate. |
MANOVA | Any ANOVA model with multiple DVs. Provides omnibus F and separate Fs. |
ANOVA models are parametric, relying on assumptions about the distribution of the dependent variables (DVs) for each level of the independent variable(s) (IVs).
Initially the array of assumptions for various types of ANOVA may seem bewildering. In practice, the first two assumptions here are the main ones to check. Note that the larger the sample size, the more robust ANOVA is to violation of the first two assumptions: normality and homoscedasticity (homogeneity of variance).
These assumptions apply to independent sample t-tests (see also t-test assumptions), one-way ANOVAs and factorial ANOVAs.
For ANOVA models involving repeated measures, there is also the assumptions of:
When two or more IVs combine to have synergistic effects on the DV, an interaction is said to occur. This means that the effect of one IV on the DV is moderated by another IV.
Effect sizes should be reported in addition to significance test results for ANOVA. Of note are eta-squared, partial eta-squared and Cohen's d:
Recommended further reading: Measures of Effect Size (Strength of Association) for Analysis of Variance (Becker, 1999).
Power for ANOVAs can usually be calculated as part of the analysis using statistical software (e.g., SPSS).