This learning activity utilizes text, imagery, and applet-simulations to introduce the concepts associated with Binary Star systems and the search for Extrasolar Planets (exoplanets for short). This is a rapidly developing field within Astronomy due to new technology allowing scientists to either directly image or better infer the presence of exosolar planets via gravitational pull, detection of change in visual magnitude, and other methods.
The activity is separated into three parts to contour the experience into basic, advanced, and mathematical conceptual understanding. The basic level will introduce the general ideas of what is occurring. The advanced level will further the conceptual experience to fully understanding the concepts necessary to apply mathematical analysis upon either a binary star system or exoplanet. The mathematical analysis will introduce Astrophysics equations in order to give a taste of how scientists analyze the data they collect to aid in the discovery of exoplanets. Lastly, if you still seek more there is a way that you too can aid in the search for exoplanets without the need for a degree in the field or a large telescope!
When you have completed this activity you should be able to; by level: Basic: Know terminology and have background-level knowledge of binary systems and exoplanets. Advanced: Know and understand select techniques pertaining to binary systems and how they can be applied to the search for exoplanets. Mathematical: Be able to use data to get practical information about either binary stars or exoplanets.
This section looks into the types of binary stars, the light curve, center of mass, and a simple applet to understand how changing mass and distance causes changes in the orbits of binaries.
Types of Binary Stars:
All of the above, with the exception of an optical double, can also be applied for exoplanet discovery although the size, mass, and light emission for exoplanets make it considerably more difficult. Optical doubles are impossible for exoplanets since the overwhelming majority of their light is reflected from the star they orbit.
As shown, the light curve over the period (the length of the line) of orbit has two drops in luminosity. This would be the data generated by an eclipsing binary star system.
The first drop is far greater, indicating that it is the passing of the colder, less luminous star in front of the hotter one. This means that, for every unit area, it is in effect blocking more light. It does not matter which star, colder or hotter, is larger.
The second drop represents the hotter star passing in front of the cooler one. It is less because the light being blocked is that of the less luminous star which for every unit area sends less light towards the observer than the hot one.
The duration of the drops should be approximately the same (not perfectly reflected in this image) as the smaller star disappears at the same rate behind as it blocks the light in front. Also, the duration reflects the time spent behind or in front of the other star. The diagonal slopes in and out represent the partial concealment of the star being progressive depending on the duration it takes to fully block the other star.
Again, this can be applied to exoplanets, albeit far more difficult. Although the lack of light production by a planet assists by decreasing the luminosity to nearly nothing for the gap it makes, the gap of light it actually makes is so much smaller due to tiny radius relative to that of a star that it is nearly unnoticeable to even many modern telescopes.
Center of mass is a point at which the combined mass of the two (or more) bodies involved in the rotation act as if they were concentrated at this single point. This point lies between the masses involved, and is closer to the larger masses then the smaller masses. If the system of rotating masses has a transverse velocity the motion can be represented by the motion of the center of mass with this same velocity. This can be related to the solar system in the sense that the Sun is (essentially, it too rotates some, in actuality, from the pull of the planets) the center of mass by which the planets orbit. However, when two bodies approach nearer masses this point is drawn out of being located within the heavier body and actually lies at a point in space directly between the two bodies. It remains equidistance from both stars (in the case of exactly equal mass) as the orbit in their elliptical orbits about it. The figure shows a center of mass located within the star, but note that they always remain on opposite sides of the center. More bodies makes the situation far more complex, but ultimately it is the same idea that at any given time the positional motion of all the bodies keeps the central rotation about the center of mass.
We now turn to the Applet to gain an active appreciation for the above concepts. To keep things simple, the Applet for this section has limited options. Once you open it, you can see the white dot as the star (the Sun for most of the options) and the blue dot as the planet. The Applet also greatly exaggerates the movement about the center of mass to exemplify the effect of gravitational binding between the two objects making them both move. One must be aware of this as the 10 Jupiter setting demonstrates the movement of two near-equal mass bodies whilst in reality ten times the mass of Jupiter is still a very miniscule mass compared to the sun (a mere 0.95%) and would not send the Sun on a crash-course through the solar system as this Applet shows.
Now, let’s run some tests with the Applet[1] (Open in new window if it fails to run in a new tab) and see if you can answer the questions posed correctly.
Answers:
That concludes the basics of binary stars and exoplanets. We now move on to flesh out more advanced concepts, some of which were alluded to here.
This section looks into the more advanced concepts of: Kepler’s Laws of Planetary Motion, Newton’s version of Kepler’s Third Law, Orientation to Earth, Doppler Shift, and Proportionality.
Kepler’s Laws were created to explain the motion of the planets in the Solar System. They are based upon Tycho Brahe’s very accurate measuring of the heavens over many years. They center on the principle of rejecting the geocentric model in favor of the heliocentric model as was necessary to match the data without using epicycles to explain the motion.
They are as follows:
The first law works on the principle of center of mass. Kepler determined the orbits were elliptical based upon Tycho’s measurements not fitting the theory using perfect circles which is logical to abide by today when dealing with binaries and exoplanets.
The second law is also useful by relating the speed increase when the objects interacting approach each other and slow when departing. Velocity is a useful tool towards determining other information about binary stars and stars with exoplanets.
The third law was the first true astrophysical equation. Although it only applies to objects orbiting the Sun (or other approximately equal mass stars) in its current form it is still useful and becomes greatly more useful when later manipulated by Newton. Kepler’s third law has become hugely helpful in determining the masses present in binary stars or exoplanets as will be used in the mathematical concepts portion.
The third law in proportional form:
Newton’s Law of Gravitation dictates that all objects in the universe are gravitationally bound to each other. This is drawn into Kepler’s Laws by the planet exerting a force on the star as well as the star on the planet and also separated the masses so one can apply the property to any objects that are gravitationally bound in a meaningful way (not so distant that the pull has no impact).
Newton’s revised law:
This law is commonly used to determine the total mass of visual binaries that then allows extrapolation to large amounts of other data.
The orientation to Earth is often known as inclination. The vast majority of stars provide an orientation of their satellites that is not eclipsing over the center of the star or perfectly upon the celestial sphere. It is for this reason that when we often are only able to extrapolate a minimum mass when viewing a star’s wobble because we do not know the inclination and, thus, are only able to detect the portion pulling the star on the plane of celestial sphere.
Doppler Shift is the basis for a Spectroscopic Binary system. It is found by either two separate shifts in spectra or a single shift generated by an unseen companion on the primary star. It is important because the shifts can be used to find the radial velocity of both stars or the visible one if only one spectrum is observed. The equation to determine radial velocity is:
c is the speed of light in a vacuum (3x108 m/s)
λ0 is the rest wavelength of the spectra
Δλ is the change from the rest wavelength to the measured wavelength
vr is the radial velocity in m/s
If the period is known this can be paired with it to determine the semi-major axis.
Since all motion involving two objects revolves around a give-and-take relationship there arises the intrinsic relationship between many physical aspects of the two and their behavior with respect to each other.
All of the following relations can be derived from Kepler’s Laws and Doppler Shift and associated mathematical principles.
Note: Units do not matter as they are ratios and the units cancel.
m is mass
r is the separation distance
a is the length of the semi-major axis
α is the angular separation
v is the velocity
vr is the radial velocity
Δλ is the change in wavelength due to Doppler Shift
This application section will use a more technical Applet[2] that allows for more intimate manipulation of the model to better experiment with some of the ideas in this section.
Answers:
Doppler Shift worked out:
can be rewritten
which equals
and yields
nm.
Kepler's Third Law worked out:
can be rewritten
which equals
and yields
s2 → s
The simplified version:
which equals
and yields
yr2 → yr
which simplifies to
yrsyr-1 s.
This concludes the advanced concepts that can be associated with binary stars and exoplanets. To fully explore the nature of these entities continue onto the mathematical concepts that will utilize real stellar data to extrapolate more data about binary stars.
To Be Added
If you are interested in doing further exploration of exoplanets and helping the scientific community in the process you can go to visit Systemic[3]. The Systemic site has a console to download[4] which contains radial velocity data for stars which are suspect or known to be supporting exoplanets. You are able, with the console, to match a curve to the data by adding planets and controlling the planetary mass and distance until it is a good fit for the data accumulated so far. Upon registering, you are able to submit the curve where the system will compare it to other curves for the same data set generated by other members and, ultimately, as more data becomes available and submissions narrow down possible candidates to the stellar movement your curve fitting may contribute to the verification of the existence of one or more exoplanets orbiting a distant star. For further explanation of the software, check out their tutorials[5].