This course is a hands-on introduction into computer architecture. The main target is to build a simple, pipelined microprocessor and run it in an FPGA. This course is associated with a real course at the Technical University of Denmark.
In this course you will design and develop extensions to the T-CREST time-predictable multicore processor and implement it in an FPGA.
There are only two rules for your design:
Everything else is up to you. Be creative!
The lab work and the project are part of the final grade.
Following points are given for individual parts:
Several assignments will help you to get started. We will start on a weekly basis and loosen it up at the end when the main activity is your project.
As a first action add a template for your project and your name at the Student page.
To get started using an FPGA start with following small projects:
A Simple Blinking LED
Use the Chisel examples repository and the flow as described in the Chisel slides:
The FPGA Hello World Example describes the FPGA design flow with Quartus.
We adapt the lab for the remote/home office learning
UART Output
A UART will enable you to communicate between a PC and your processor. Therefore, this is our first real Chisel/VHDL example. For this experiment, connect a serial cable between the FPGA board and the serial port on your PC. Start a terminal program (gtkterm on Linux or Hyperterm on Windows) with baud rate 115200 and no handshake.
Extend the blinking LED example with a UART and write 0 and 1 to the serial line when the LED is off and on.
The Chisel code for the UART transmit is available as part of the Chisel examples at [1] To simplify your design use an additional buffer as shown in the Sender example:
The VHDL code for a UART is available here: sc_uart.vhd and fifo.vhd. The UART is connected via the SimpCon interface.
With the slow output of characters (two per second) you can just write the data to the UART transmit register.
Extend the example by writing repeated numbers 0-9 as fast as the baud rate allows. In this case you have to extend your state machine to poll the UART status to check if the transmit buffer is free.
UART Input (optional)
Implement a state machine that receives characters from the UART. Switch the LED on and off with two different commands received on the serial line.
ModelSim UART print out (optional, not with Chisel)
There is a faster simulation version of the UART available that prints the output to the ModelSim console: sim_sc_uart.vhd.
Having mastered this UART examples gives you a great tool to debug your processor design. The UART output will probably be the only way to communicate with your processor.
For further tips see HOWTO.
Exercises from Chisel lab3: https://github.com/schoeberl/chisel-lab/tree/master/lab3
Continue with Chisel exercises (UART, ALU example, project from scratch)
Exercises from the Verify lab: https://github.com/chiselverify/class2020/tree/master/lab1 and https://github.com/chiselverify/class2020/tree/master/lab2
Explore Patmos with the provided VM.
Exercise document: Getting Started with Patmos section in the Patmos Reference Handbook
A brief presentation of your project idea and the plan how to execute the idea.
A conference-style paper on their project, two-column format, maximum of 8 pages
You will present your initial project idea at the project start and the finished project in the last week (presentation and demonstration).
To implement your design you can use any decent FPGA board. A serial interface (UART) will help for debugging. If you need more memory than the few KB on-chip the board should contain memory chips connected to the FPGA. I suggest using a board with SRAMs as they are easy to connect to the processor.
Add yourself to this list for this semester. It is strongly suggested for the students from DTU.
The former student pages:
a short list of open issues: