The enrollment key for each course is 123. They are all is set to practice mode, giving students unlimited attempts at each question. Instructors can also print out copies of the quiz for classroom use. If you have any problems leave a message at user talk:Guy vandegrift.
This page will be superceded by OpenStax College Physics and OpenStax University Physics see also Wright State University Lake Campus
Equation Sheet Wikiquizzes Wikiquiz_solutions Online_textbook Current Trigbased Current Calcbased Labs OpenStax College Rewrite
Category:Physics equations Subcategories: Equations Quizzes Equations_transcluded Sheet node_index supplement
Mathematics for this course (click here for "textbook")
Measured in radians, defines angle (in radians), where s is arclength and r is radius. The circumference of a circle is and the circle's area is is its area. The surface area of a sphere is and sphere's volume is
A vector can be expressed as, , where , and are the x and y components. Alternative notation for the unit vectors include and . An important vector is the displacement from the origin, with components are typically written without subscripts: . The magnitude (or absolute value or norm) of a vector is is , where the angle (or phase), , obeys , or (almost) equivalently, . As with any function/inverse function pair, the tangent and arctangent are related by where . The arctangent is not a true function because it is multivalued, with .
The geometric interpretations of and are shown in the figure. Vector addition and subtraction can also be defined through the components: AND
|
Difference is denoted by , , or the Delta. or . Average, or mean, is denoted by , where is number and are probabilities. The average velocity is , and the average acceleration is , where denotes position. In CALCULUS, instantaneous values are denoted by v(t)=dx/dt and a=dv/dt=d2x/dt2.
The equations of motion for uniform acceleration are: , and, . Also, , and, . Note that only if the acceleration is uniform.
...in advanced notation this becomes .
In free fall we often set, ax=0 and ay= -g. If angle is measured with respect to the x axis:
The figure shows a Man moving relative to Train with velocity, , where the velocity of the train relative to Earth is, is the velocity of the Train relative to Earth. The velocity of the Man relative to Earth is,
If the speeds are relativistic, define u=v/c where c is the speed of light, and this formula must be modified to:
Newton's laws of motion, can be expressed with two equations, and . The second represents the fact that the force that the i-th object exerts one object exerts on the j-th object is equal and opposite the force that the j-th exerts on the i-th object. Three non-fundamental forces are:
The x and y components of the three forces of tension on the small grey circle where the three "massless" ropes meet are:
proof
|
---|
where and . For polar coordinates, use |
The SI units for torque is the newton metre (N·m). It would be inadvisable to call this a Joule, even though a Joule is also a (N·m). The symbol for torque is typically τ, the Greek letter tau. When it is called moment, it is commonly denoted M.[1] The lever arm is defined as either r, or r⊥. Labeling r as the lever arm allows moment arm to be reserved for r⊥.
Linear motion | Angular motion |
---|---|
The following table refers to rotation of a rigid body about a fixed axis: is arclength, is the distance from the axis to any point, and is the tangential acceleration, which is the component of the acceleration that is parallel to the motion. In contrast, the centripetal acceleration, , is perpendicular to the motion. The component of the force parallel to the motion, or equivalently, perpendicular, to the line connecting the point of application to the axis is . The sum is over particles or points of application.
Linear motion | Rotational motion | Defining equation |
---|---|---|
Displacement = | Angular displacement = | |
Velocity = | Angular velocity = | |
Acceleration = | Angular acceleration = | |
Mass = | Moment of Inertia = | |
Force = | Torque = | |
Momentum= | Angular momentum= | |
Kinetic energy = | Kinetic energy = |
Description[3] | Figure | Moment(s) of inertia |
---|---|---|
Rod of length L and mass m (Axis of rotation at the end of the rod) |
||
Solid cylinder of radius r, height h and mass m | ||
Sphere (hollow) of radius r and mass m | ||
Ball (solid) of radius r and mass m |
Pressure versus Depth: A fluid's pressure is F/A where F is force and A is a (flat) area. The pressure at depth, below the surface is the weight (per area) of the fluid above that point. As shown in the figure, this implies:
where is the pressure at the top surface, is the depth, and is the mass density of the fluid. In many cases, only the difference between two pressures appears in the final answer to a question, and in such cases it is permissible to set the pressure at the top surface of the fluid equal to zero. In many applications, it is possible to artificially set equal to zero, for example at atmospheric pressure. The resulting pressure is called the gauge pressure, for below the surface of a body of water.
Buoyancy and Archimedes' principle Pascal's principle does not hold if two fluids are separated by a seal that prohibits fluid flow (as in the case of the piston of an internal combustion engine). Suppose the upper and lower fluids shown in the figure are not sealed, so that a fluid of mass density comes to equilibrium above and below an object. Let the object have a mass density of and a volume of , as shown in the figure. The net (bottom minus top) force on the object due to the fluid is called the buoyant force:
and is directed upward. The volume in this formula, AΔh, is called the volume of the displaced fluid, since placing the volume into a fluid at that location requires the removal of that amount of fluid. Archimedes principle states:
Note that if , the buoyant force exactly cancels the force of gravity. A fluid element within a stationary fluid will remain stationary. But if the two densities are not equal, a third force (in addition to weight and the buoyant force) is required to hold the object at that depth. If an object is floating or partially submerged, the volume of the displaced fluid equals the volume of that portion of the object which is below the waterline.
Here it is convenient to define heat as energy that passes between two objects of different temperature The SI unit is the Joule. The rate of heat trasfer, or is "power": 1 Watt = 1 W = 1J/s
A point on a PV diagram define's the system's pressure (P) and volume (V). Energy (E) and pressure (P) can be deduced from equations of state: E=E(V,P) and T=T(V,P). If the piston moves, or if heat is added or taken from the substance, energy (in the form of work and/or heat) is added or subtracted. If the path returns to its original point on the PV-diagram (e.g., 12341 along the rectantular path shown), and if the process is quasistatic, all state variables (P, V, E, T) return to their original values, and the final system is indistinguishable from its original state.
The net work done per cycle is area enclosed by the loop. This work equals the net heat flow into the system, (valid only for closed loops).
Remember: Area "under" is the work associated with a path; Area "inside" is the total work per cycle.
CALCULUS: .
Let describe position:
Consider a collection of particles of charge , located at points (called source points), the electric field at (called the field point) is:
is the electric field due to distributed charge, where , and denote linear, surface, and volume density (or charge density), respectively.
Cartesian coordinates (x, y, z). Volume element: . Line element:. Three basic area elements: , or,, or,.
Cylindrical coordinates (ρ, φ, z): Volume element: . Line element:. Basic area elements: (side), and, (top end).
Spherical coordinates (r, θ, φ): Volume element: (if symmetry holds). Line element:. Basic area element of a sphere: , where dΩ is a solid angle.
CALCULUS supplement
Here, Ω is a (3-dimensional) volume and ∂Ω is the boundary of the volume, which is a (two-dimensional) surface. Also a surface is Σ, which, if open, has the boundary ∂Σ, which is a (one-dimensional) curve.
where V0 is the capacitor voltage at time t = 0 (when the switch was closed). The time required for the voltage to fall to is called the RC time constant and is given by
Cyclotron motion: For a particle moving perpendicular to B, we have cyclotron motion. Recall that for uniform circular motion, the acceleration is a=v2/r, where r is the radius. Since sin θ =1, Newton's second law of motion (F=ma) yields,
Since, sin θ =0, for motion parallel to a magnetic field, particles in a uniform magnetic field move in spirals at a radius which is determined by the perpendicular component of the velocity:
Hall effect: The Hall effect occurs when the magnetic field, velocity, and electric field are mutually perpendicular. In this case, the electric and magnetic forces are aligned, and can cancel if qE=qvB (since sinθ = 1). Since both terms are porportional to charge, q, the appropriate ratio of electric to magnetic field for null net force depends only on velocity:
where we have used the fact that voltage (i.e. emf or potential) is related to the electric field and a displacement parallel to that field: ΔV = -E Δs cosθ
CALCULUS supplement:
Maxwell's equations hold for all volumes and closed surfaces. In vacuum, electromagnetic waves travel at the speed, .
Edits
|
---|
No changes during the given period match these criteria. |}
|