Categories
  Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Rate problems in calculus

From Wikiversity - Reading time: 2 min

This is a collection of study problems related to rates of change.

Example

[edit | edit source]

a coned-shaped paper drinking cup is to be made to hold 27cu. cm. of water. Find the height and radius of the cup that will use the smallest amount of paper.

Solution

[edit | edit source]

First, we have to find a formula which relates the volume of the container, and the height. One possible formula is

We can put in the time dependence explicitly:

So, differentiating with respect to time (using the product rule), we get

Now, one of the crucial observations here is that the radius of the container is not changing. So we know that

Hence,

Substituting in all our quantities, we can get the answer!


Questions

[edit | edit source]
  • A ladder 5 m long is falling down along the side of a wall without slipping. When the top is 3 m from the ground, how fast is the end of the ladder moving away from the wall?
  • A cylindrical cone is filled with water at a rate of 2 cm3/s. When the height of the water is 10 cm, both the diameter and the height of the water is expanding at a rate of 1 cm/s. What is the slope of the cone?

Licensed under CC BY-SA 3.0 | Source: https://en.wikiversity.org/wiki/Rate_problems_in_calculus
10 views |
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF