Educational level: this is a secondary education resource. |
Subject classification: this is a science resource. |
Type classification: this is a lesson resource. |
The cell membrane is the outer layer of the cell. The primary function of the cell membrane is to regulate what substances enter and leave the cell. The cell membrane is selectively permeable, or "semi-permeable", meaning that the membrane only allows certain substances to enter or leave the cell. Scientists use what is called the Fluid Mosaic Model to describe the cell membrane's structure and function.
This complex "biological membrane" contains several parts and each of those parts have a specific function:
The cell membrane needs to move water, oxygen, carbon dioxide, glucose and ions across the cell membrane. This is to help organisms maintain homeostasis (maintaining the organism's temperature, water levels, and glucose levels) and get rid of waste. The cell membrane helps the organism do these vital actions. Our cell membrane move these molecules in [either?] two ways:
Passive Transport is moving molecules in or out of the cell without using energy (population moving, not individual molecules). Molecules, in a passive transport, usually move across a membrane from where there are MORE molecules to where there are LESS molecules (High concentration to low concentration). The molecules are moved down the concentration gradient. Equilibrium has been reached when the concentration of the molecule that is moving is equal on both sides of a membrane. Types of passive transport include: diffusion, osmosis and faciliated diffusion.
Facilitated Diffusion is when molecules that are too large to fit through the phospholipid bilayer, so a "channel protein" is used to help them move from where there are more molecules to where there are fewer molecules[DIFFUSION]. Molecules that use this process to move in and out of the cell membrane include glucose, water, ions and amino acids/lipids.
Active transport is moving molecules in or out of the cell WITH energy! Molecules usually move across a membrane from where there are LESS molecules to where there are MORE molecules (Low concentration → High concentration). Molecules, in an active transport, move AGAINST the concentration gradient. Types of active transports include exocytosis and endocytosis.
Endocytosis is taking items into the cell by membrane folding (bulk transport). This is a type of active transport, therefore it requires energy. White blood cells are a great example of this form of active transport. When the white blood cells engulf invaders to your body, this is known as exocytosis. Exosytosis is taking items out of the cell by membrane folding. This is, again, a type of active transport, and therefore, it requires energy. Paramecium expelling water through the contractile vacuole (in a cell) is an example of exosytosis. Active transport will help move large molecules, such as glucose and proteins, across the cell membrane.
In endocytosis, the cell takes in molecules by forming new vesicles from the plasma membrane,
Search for Cell membrane on Wikipedia. |