In functional analysis and related areas of mathematics, quasibarrelled spaces are topological vector spaces (TVS) for which every bornivorous barrelled set in the space is a neighbourhood of the origin.
Quasibarrelled spaces are studied because they are a weakening of the defining condition of barrelled spaces, for which a form of the Banach–Steinhaus theorem holds.
Contents
1Definition
2Properties
3Characterizations
4Examples and sufficient conditions
4.1Counter-examples
5See also
6References
7Bibliography
Definition
A subset [math]\displaystyle{ B }[/math] of a topological vector space (TVS) [math]\displaystyle{ X }[/math] is called bornivorous if it absorbs all bounded subsets of [math]\displaystyle{ X }[/math];
that is, if for each bounded subset [math]\displaystyle{ S }[/math] of [math]\displaystyle{ X, }[/math] there exists some scalar [math]\displaystyle{ r }[/math] such that [math]\displaystyle{ S \subseteq r B. }[/math]
A barrelled set or a barrel in a TVS is a set which is convex, balanced, absorbing and closed.
A quasibarrelled space is a TVS for which every bornivorous barrelled set in the space is a neighbourhood of the origin.[1][2]
Properties
A locally convex Hausdorff quasibarrelled space that is sequentially complete is barrelled.[3]
A locally convex Hausdorff quasibarrelled space is a Mackey space, quasi-M-barrelled, and countably quasibarrelled.[4]
A locally convex quasibarrelled space that is also a σ-barrelled space is necessarily a barrelled space.[2]
A locally convex space is reflexive if and only if it is semireflexive and quasibarrelled.[2]
Characterizations
A Hausdorff topological vector space [math]\displaystyle{ X }[/math] is quasibarrelled if and only if every bounded closed linear operator from [math]\displaystyle{ X }[/math] into a complete metrizable TVS is continuous.[5]
By definition, a linear [math]\displaystyle{ F : X \to Y }[/math] operator is called closed if its graph is a closed subset of [math]\displaystyle{ X \times Y. }[/math]
For a locally convex space [math]\displaystyle{ X }[/math] with continuous dual [math]\displaystyle{ X^{\prime} }[/math] the following are equivalent:
[math]\displaystyle{ X }[/math] is quasibarrelled.
Every bounded lower semi-continuous semi-norm on [math]\displaystyle{ X }[/math] is continuous.
Every [math]\displaystyle{ \beta(X', X) }[/math]-bounded subset of the continuous dual space [math]\displaystyle{ X^{\prime} }[/math] is equicontinuous.
If [math]\displaystyle{ X }[/math] is a metrizable locally convex TVS then the following are equivalent:
The strong dual of [math]\displaystyle{ X }[/math] is quasibarrelled.
The strong dual of [math]\displaystyle{ X }[/math] is barrelled.
The strong dual of [math]\displaystyle{ X }[/math] is bornological.
Examples and sufficient conditions
Every Hausdorff barrelled space and every Hausdorff bornological space is quasibarrelled.[6]
Thus, every metrizable TVS is quasibarrelled.
Note that there exist quasibarrelled spaces that are neither barrelled nor bornological.[2]
There exist Mackey spaces that are not quasibarrelled.[2]
There exist distinguished spaces, DF-spaces, and [math]\displaystyle{ \sigma }[/math]-barrelled spaces that are not quasibarrelled.[2]
The strong dual space [math]\displaystyle{ X_b^{\prime} }[/math] of a Fréchet space [math]\displaystyle{ X }[/math] is distinguished if and only if [math]\displaystyle{ X }[/math] is quasibarrelled.[7]
Counter-examples
There exists a DF-space that is not quasibarrelled.[2]
There exists a quasibarrelled DF-space that is not bornological.[2]
There exists a quasibarrelled space that is not a σ-barrelled space.[2]
See also
Barrelled space – Type of topological vector space
Countably barrelled space
Infrabarrelled space
References
↑Jarchow 1981, p. 222.
↑ 2.02.12.22.32.42.52.62.72.8Khaleelulla 1982, pp. 28-63.
↑Khaleelulla 1982, p. 28.
↑Khaleelulla 1982, pp. 35.
↑Adasch, Ernst & Keim 1978, p. 43.
↑Adasch, Ernst & Keim 1978, pp. 70-73.
↑Gabriyelyan, S.S. "On topological spaces and topological groups with certain local countable networks (2014)
Bibliography
Adasch, Norbert; Ernst, Bruno; Keim, Dieter (1978). Topological Vector Spaces: The Theory Without Convexity Conditions. Lecture Notes in Mathematics. {3834. Berlin New York: Springer-Verlag. ISBN 978-3-540-08662-8. OCLC 297140003.
Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
Bourbaki, Nicolas (1987). Topological Vector Spaces: Chapters 1–5. Éléments de mathématique. 2. Berlin New York: Springer-Verlag. ISBN 978-3-540-42338-6. OCLC 17499190. http://www.numdam.org/item?id=AIF_1950__2__5_0.
Conway, John B. (1990). A Course in Functional Analysis. Graduate Texts in Mathematics. 96 (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-97245-9. OCLC 21195908.
Edwards, Robert E. (Jan 1, 1995). Functional Analysis: Theory and Applications. New York: Dover Publications. ISBN 978-0-486-68143-6. OCLC 30593138.
Grothendieck, Alexander (January 1, 1973). Topological Vector Spaces. New York: Gordon and Breach Science Publishers. ISBN 978-0-677-30020-7. OCLC 886098. https://archive.org/details/topologicalvecto0000grot.
Template:Hogbe-Nlend Bornologies and Functional Analysis
Husain, Taqdir; Khaleelulla, S. M. (1978). Barrelledness in Topological and Ordered Vector Spaces. Lecture Notes in Mathematics. 692. Berlin, New York, Heidelberg: Springer-Verlag. ISBN 978-3-540-09096-0. OCLC 4493665.
Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
Köthe, Gottfried (1969). Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. 159. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2. OCLC 840293704.
Khaleelulla, S. M. (July 1, 1982). written at Berlin Heidelberg. Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. 936. Berlin New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
Swartz, Charles (1992). An introduction to Functional Analysis. New York: M. Dekker. ISBN 978-0-8247-8643-4. OCLC 24909067.
Trèves, François (August 6, 2006). Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
v
t
e
Functional analysis (topics)
Topological vector spaces
Asplund
Banach (list)
Banach lattice
Barrelled
Bornological
Brauner
F-space
Fréchet (tame)
Hilbert (Inner product space
Polarization identity)
LF-space
Locally convex (Seminorms/Minkowski functionals)
Mackey
Montel
Nuclear
Normed (norm)
Quasinormed
Reflexive
Riesz
Smith
Stereotype
Strictly convex
Webbed
Topological tensor product (of Hilbert spaces)
Topologies of function spaces
Dual
Dual space (Dual norm)
Operator
Ultraweak
Weak (polar
operator)
Mackey
Strong (polar
operator)
Ultrastrong
Uniform convergence
Linear operators
Adjoint
Bilinear (form
operator
sesquilinear)
(Un)Bounded
Closed
Compact (on Hilbert spaces)
(Dis)Continuous
Densely defined
Fredholm
Hilbert–Schmidt
Functionals (positive)
Normal
Nuclear
Self-adjoint
Strictly singular
Trace class
Transpose
Unitary
Operator theory
Banach algebras
C*-algebras
Spectrum (C*-algebra
radius)
Spectral theory (of ODEs
Spectral theorem)
Polar decomposition
Singular value decomposition
Theorems
Banach–Alaoglu
Banach–Mazur
Banach–Saks
Banach–Schauder (open mapping)
Banach–Steinhaus (Uniform boundedness)
Bessel's inequality
Cauchy–Schwarz inequality
Closed graph
Closed range
Eberlein–Šmulian
Freudenthal spectral
Gelfand–Mazur
Gelfand–Naimark
Goldstine
Hahn–Banach (hyperplane separation)
Kakutani fixed-point
Krein–Milman
Lomonosov's invariant subspace
Mackey–Arens
Mazur's lemma
M. Riesz extension
Riesz representation
Parseval's identity
Schauder fixed-point
Analysis
Abstract Wiener space
Bochner space
Differentiation in Fréchet spaces
Derivatives (Fréchet
Gateaux
functional
holomorphic)
Integrals (Bochner
Dunford
Gelfand–Pettis
regulated
Paley–Wiener
weak)
Functional calculus (Borel
continuous
holomorphic)
Inverse function theorem (Nash–Moser theorem)
Measures (Lebesgue
Projection-valued
Vector)
Weakly measurable function
Types of sets
Absolutely convex
Absorbing
Balanced
Bounded
Convex
Convex cone (subset)
Linear cone (subset)
Radial
Star-shaped
Symmetric
Zonotope
Subsets / set operations
Algebraic interior (core)
Bounding points
Convex hull
Extreme point
Interior
Minkowski addition
Polar
0.00
(0 votes)
Original source: https://en.wikipedia.org/wiki/Quasibarrelled space. Read more