It matters Chemistry |
Action and reaction |
Elementary! |
Spooky scary chemicals |
Er, who's got the pox? |
Chemistry is the branch of science that studies the interaction between atoms, and how atoms form molecules and compounds and mixtures. The science mostly concerns itself with the activities of the outer electrons of atoms, protons and neutrons, as well as how these molecules interact with other molecules, and provides the basic rules on which biological sciences are based. Essentially, if someone marvels at how amazing it is that a protein folds together, or that coal and oil happen to burn to create energy, it is the rules governed by chemistry that make it happen.
Modern chemistry is capable of amazing things, both analyzing the exact structure of complex molecules and synthesizing naturally-occurring and "invented" molecules and substances. From dyes to plastics, to the processes that purify the silicon used in computer chips, the science of chemistry is inextricably linked with how the human race is able to live today.
Most atoms bond with each other by "sharing" "electrons" between their valence shells in what is known as a covalent bond. It is the breaking and making of such bonds that governs most, if not all of chemistry. When more than one atom is bonded together, the result is called a molecule, ranging from the small, such as methane, to the very large such as DNA. These bonds can be further split into non-polar and polar bonds: non-polar bonds "share" "electrons" relatively equally (e.g. between carbon and nitrogen), while polar bonds "share" "electrons" primarily to one side of the bond (e.g. between oxygen and hydrogen).
Ionic bonding is what occurs when "electron(s)" are overwhelmingly attracted to one side of a bond (e.g. between sodium and chlorine), to the point that it would be reasonably accurate to say that the "electron" is transferred from one atom to the other. This creates an ion. As an atom has an overall neutral charge, the removal of an electron leaves a positively charged ion and the addition of an electron leaves a negatively charged ion. Electrostatic forces then attract the positively charged ions to the negatively charged ions. An example of ionic bonding is in common salt, sodium chloride, which contains an equal number of positively charged sodium ions and negatively charged chloride ions bonded electrostatically.
Metallic bonding is a special (and complicated) type of bond that is difficult to describe simply. A simple way to explain it is that metals may be imagined as positively charged nuclei floating in a "sea" of negative charge where electrons are/ might be. The ability of electrons to move around easily "explains" the heat capacity, conductivity, malleability, and ductility of metals. This model is, however, generally taken to be a simplification on the scale of the Bohr model. A more accurate model is that of the Band Theory.[5]
Categories: [Chemistry] [Physics]