Short description: Nuclides with atomic number of 113 but with different mass numbers
Main isotopes of Chemistry:nihonium (113Nh)
Isotope
Decay
abundance
half-life (t1/2)
mode
product
278Nh
syn
1.4 ms
α
274Rg
282Nh
syn
73 ms
α
278Rg
283Nh
syn
75 ms
α
279Rg
284Nh
syn
0.91 s
α
280Rg
EC
284Cn
285Nh
syn
4.2 s
α
281Rg
286Nh
syn
9.5 s
α
282Rg
287Nh[1]
syn
5.5 s?
α
283Rg
290Nh[2]
syn
2 s?
α
286Rg
view·talk·edit
Nihonium (113Nh) is a synthetic element. Being synthetic, a standard atomic weight cannot be given and like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 284Nh as a decay product of 288Mc in 2003. The first isotope to be directly synthesized was 278Nh in 2004. There are 6 known radioisotopes from 278Nh to 286Nh, along with the unconfirmed 287Nh and 290Nh. The longest-lived isotope is 286Nh with a half-life of 9.5 seconds.
Contents
1List of isotopes
2Isotopes and nuclear properties
2.1Nucleosynthesis
2.1.1Cold fusion
2.1.2Hot fusion
2.1.3As decay product
2.2Theoretical calculations
2.2.1Evaporation residue cross sections
3References
List of isotopes
Nuclide
Z
N
Isotopic mass (u) [n 1][n 2]
Half-life
Decay mode [n 3]
Daughter isotope
Spin and parity
278Nh[3]
113
165
278.17058(20)#
2.0+2.7 −0.7 ms
α
274Rg
282Nh
113
169
282.17567(39)#
61+73 −22 ms[4]
α
278Rg
283Nh[n 4]
113
170
283.17657(52)#
123+80 −35 ms[4]
α
279Rg
284Nh[n 5]
113
171
284.17873(62)#
0.90+0.07 −0.06 s[4]
α (≥99%)
280Rg
EC (≤1%)[4]
284Cn
285Nh[n 6]
113
172
285.17973(89)#
2.1+0.6 −0.3 s[4]
α (82%)
281Rg
SF (18%)[4]
(various)
286Nh[n 7]
113
173
286.18221(72)#
9.5 s
α
282Rg
287Nh[n 8]
113
174
287.18339(81)#
5.5 s
α
283Rg
290Nh[n 9]
113
177
2 s?
α
286Rg
↑( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
↑# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
↑
Modes of decay:
EC:
Electron capture
↑Not directly synthesized, occurs as decay product of 287Mc
↑Not directly synthesized, occurs as decay product of 288Mc
↑Not directly synthesized, occurs in decay chain of 293Ts
↑Not directly synthesized, occurs in decay chain of 294Ts
↑Not directly synthesized, occurs in decay chain of 287Fl; unconfirmed
↑Not directly synthesized, occurs in decay chain of 290Fl and 294Lv; unconfirmed
Isotopes and nuclear properties
Nucleosynthesis
Super-heavy elements such as nihonium are produced by bombarding lighter elements in particle accelerators that induce fusion reactions. Whereas most of the isotopes of nihonium can be synthesized directly this way, some heavier ones have only been observed as decay products of elements with higher atomic numbers.[5]
Depending on the energies involved, the former are separated into "hot" and "cold". In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (actinides), giving rise to compound nuclei at high excitation energy (~40–50 MeV) that may either fission or evaporate several (3 to 5) neutrons.[6] In cold fusion reactions, the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the ground state, they require emission of only one or two neutrons, and thus, allows for the generation of more neutron-rich products.[5] The latter is a distinct concept from that of where nuclear fusion claimed to be achieved at room temperature conditions (see cold fusion).[7]
Cold fusion
Before the synthesis of nihonium by the RIKEN team, scientists at the Institute for Heavy Ion Research (Gesellschaft für Schwerionenforschung) in Darmstadt, Germany also tried to synthesize nihonium by bombarding bismuth-209 with zinc-70 in 1998. No nihonium atoms were identified in two separate runs of the reaction.[8] They repeated the experiment in 2003 again without success.[8] In late 2003, the emerging team at RIKEN using their efficient apparatus GARIS attempted the reaction and reached a limit of 140 fb. In December 2003 – August 2004, they resorted to "brute force" and carried out the reaction for a period of eight months. They were able to detect a single atom of 278Nh.[9] They repeated the reaction in several runs in 2005 and were able to synthesize a second atom,[10] followed by a third in 2012.[11]
The table below contains various combinations of targets and projectiles which could be used to form compound nuclei with Z=113.
Target
Projectile
CN
Attempt result
208Pb
71Ga
279Nh
Reaction yet to be attempted
209Bi
70Zn
279Nh
Successful reaction
238U
45Sc
283Nh
Reaction yet to be attempted
237Np
48Ca
285Nh
Successful reaction
244Pu
41K
285Nh
Reaction yet to be attempted
250Cm
37Cl
287Nh
Reaction yet to be attempted
248Cm
37Cl
285Nh
Reaction yet to be attempted
Hot fusion
In June 2006, the Dubna-Livermore team synthesised nihonium directly by bombarding a neptunium-237 target with accelerated calcium-48 nuclei, in a search for the lighter isotopes 281Nh and 282Nh and their decay products, to provide insight into the stabilizing effects of the closed neutron shells at N = 162 and N = 184:[12]
23793Np + 4820Ca → 282113Nh + 3 10n
Two atoms of 282Nh were detected.[12]
As decay product
List of nihonium isotopes observed by decay
Evaporation residue
Observed nihonium isotope
294Lv, 290Fl ?
290Nh ?[2]
287Fl ?
287Nh ?[13]
294Ts, 290Mc
286Nh[14]
293Ts, 289Mc
285Nh[14]
288Mc
284Nh[15]
287Mc
283Nh[15]
286Mc
282Nh
Nihonium has been observed as a decay product of moscovium (via alpha decay). Moscovium currently has five known isotopes; all of them undergo alpha decays to become nihonium nuclei, with mass numbers between 282 and 286. Parent moscovium nuclei can be themselves decay products of tennessine. It may also occur as a decay product of flerovium (via electron capture), and parent flerovium nuclei can be themselves decay products of livermorium.[16] For example, in January 2010, the Dubna team (JINR) identified nihonium-286 as a product in the decay of tennessine via an alpha decay sequence:[14]
294117Ts → 290115Mc + 42He
290115Mc → 286113Nh + 42He
Theoretical calculations
Evaporation residue cross sections
The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.
DNS = Di-nuclear system; σ = cross section
Target
Projectile
CN
Channel (product)
σmax
Model
Ref
209Bi
70Zn
279Nh
1n (278Nh)
30 fb
DNS
[17]
238U
45Sc
283Nh
3n (280Nh)
20 fb
DNS
[18]
237Np
48Ca
285Nh
3n (282Nh)
0.4 pb
DNS
[19]
244Pu
41K
285Nh
3n (282Nh)
42.2 fb
DNS
[18]
250Cm
37Cl
287Nh
4n (283Nh)
0.594 pb
DNS
[18]
248Cm
37Cl
285Nh
3n (282Nh)
0.26 pb
DNS
[18]
References
↑Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; Burkhard, H. G. et al. (2016). "Remarks on the Fission Barriers of SHN and Search for Element 120". Exotic Nuclei. pp. 155–164. ISBN 9789813226555.
↑ 2.02.1Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; Burkhard, H. G. et al. (2016). "Review of even element super-heavy nuclei and search for element 120". The European Physics Journal A2016 (52). doi:10.1140/epja/i2016-16180-4.
↑Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Haba, Hiromitsu; Ozeki, Kazutaka; Kudou, Yuki; Sumita, Takayuki; Wakabayashi, Yasuo et al. (15 October 2012). "New Result in the Production and Decay of an Isotope, 278 113, of the 113th Element" (in en). Journal of the Physical Society of Japan81 (10): 103201. doi:10.1143/JPSJ.81.103201. ISSN 0031-9015. Bibcode: 2012JPSJ...81j3201M. https://journals.jps.jp/doi/abs/10.1143/JPSJ.81.103201. Retrieved 29 June 2023.
↑ 4.04.14.24.34.44.5Oganessian, Yu. Ts.Expression error: Unrecognized word "et". (2022). "New isotope 286Mc produced in the 243Am+48Ca reaction". Physical Review C106 (64306): 064306. doi:10.1103/PhysRevC.106.064306. Bibcode: 2022PhRvC.106f4306O.
↑Barber, Robert C.; Gäggeler, Heinz W.; Karol, Paul J.; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich (2009). "Discovery of the element with atomic number 112 (IUPAC Technical Report)". Pure and Applied Chemistry81 (7): 1331. doi:10.1351/PAC-REP-08-03-05.
↑Fleischmann, Martin; Pons, Stanley (1989). "Electrochemically induced nuclear fusion of deuterium". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry261 (2): 301–308. doi:10.1016/0022-0728(89)80006-3.
↑ 8.08.1"Search for element 113" , Hofmann et al., GSI report 2003. Retrieved on 3 March 2008
↑Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-Ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna et al. (2004). "Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn, n)278113". Journal of the Physical Society of Japan73 (10): 2593–2596. doi:10.1143/JPSJ.73.2593. Bibcode: 2004JPSJ...73.2593M.
↑Barber, Robert C.; Karol, Paul J; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich W. (2011). "Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)". Pure and Applied Chemistry83 (7): 1485. doi:10.1351/PAC-REP-10-05-01.
↑K. Morita; Morimoto, Kouji; Kaji, Daiya; Haba, Hiromitsu; Ozeki, Kazutaka; Kudou, Yuki; Sumita, Takayuki; Wakabayashi, Yasuo et al. (2012). "New Results in the Production and Decay of an Isotope, 278113, of the 113th Element". Journal of the Physical Society of Japan81 (10): 103201. doi:10.1143/JPSJ.81.103201. Bibcode: 2012JPSJ...81j3201M.
↑ 12.012.1Oganessian, Yu. Ts.; Utyonkov, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Sagaidak, R.; Shirokovsky, I.; Tsyganov, Yu. et al. (2007). "Synthesis of the isotope 282113 in the 237Np+48Ca fusion reaction". Physical Review C76 (1): 011601(R). doi:10.1103/PhysRevC.76.011601. Bibcode: 2007PhRvC..76a1601O. http://nrv.jinr.ru/pdf_file/PhysRevC_76_011601.pdf.
↑Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; Burkhard, H. G. et al. (2016). "Remarks on the Fission Barriers of SHN and Search for Element 120". Exotic Nuclei. pp. 155–164. ISBN 9789813226555.
↑ 14.014.114.2Oganessian, Yu. Ts.; Abdullin, F. Sh.; Bailey, P. D.; Benker, D. E.; Bennett, M. E.; Dmitriev, S. N.; Ezold, J. G.; Hamilton, J. H. et al. (2010). "Synthesis of a New Element with Atomic Number Z=117". Physical Review Letters104 (14): 142502. doi:10.1103/PhysRevLett.104.142502. PMID 20481935. Bibcode: 2010PhRvL.104n2502O.
↑ 15.015.1Oganessian, Yu. Ts.; Penionzhkevich, Yu. E.; Cherepanov, E. A. (2007). "Heaviest Nuclei Produced in 48Ca-induced Reactions (Synthesis and Decay Properties)". AIP Conference Proceedings. 912. pp. 235–246. doi:10.1063/1.2746600.
↑Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. http://www.nndc.bnl.gov/chart/reCenter.jsp?z=113&n=173.
↑Feng, Zhao-Qing; Jin, Gen-Ming; Li, Jun-Qing; Scheid, Werner (2007). "Formation of superheavy nuclei in cold fusion reactions". Physical Review C76 (4): 044606. doi:10.1103/PhysRevC.76.044606. Bibcode: 2007PhRvC..76d4606F.
↑ 18.018.118.218.3Feng, Z.; Jin, G.; Li, J. (2009). "Production of new superheavy Z=108-114 nuclei with 238U, 244Pu and 248,250Cm targets". Physical Review C80 (5): 057601. doi:10.1103/PhysRevC.80.057601.
↑Feng, Z; Jin, G; Li, J; Scheid, W (2009). "Production of heavy and superheavy nuclei in massive fusion reactions". Nuclear Physics A816 (1–4): 33–51. doi:10.1016/j.nuclphysa.2008.11.003. Bibcode: 2009NuPhA.816...33F.
Isotope masses from:
M. Wang et al. (2012). "The AME2012 atomic mass evaluation (II). Tables, graphs and references.". Chinese Physics C36 (12): 1603–2014. doi:10.1088/1674-1137/36/12/003. Bibcode: 2012ChPhC..36....3M. http://amdc.in2p3.fr/masstables/Ame2012/Ame2012b-v2.pdf.
Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A729: 3–128, doi:10.1016/j.nuclphysa.2003.11.001, Bibcode: 2003NuPhA.729....3A, https://hal.archives-ouvertes.fr/in2p3-00020241/document
Isotopic compositions and standard atomic masses from:
Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry78 (11): 2051–2066. doi:10.1351/pac200678112051.
Half-life, spin, and isomer data selected from the following sources.
Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A729: 3–128, doi:10.1016/j.nuclphysa.2003.11.001, Bibcode: 2003NuPhA.729....3A, https://hal.archives-ouvertes.fr/in2p3-00020241/document
National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory. http://www.nndc.bnl.gov/nudat2/.
Lide, David R., ed (2004). "11. Table of the Isotopes". CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.
v
t
e
Isotopes of the chemical elements
Group
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Period
Alkali metals
Alkaline earth metals
Pnictogens
Chalcogens
Halogens
Noble gases
1
Iso's · List
H
1
Iso's · List
He
2
2
Iso's · List
Li
3
Iso's · List
Be
4
Iso's · List
B
5
Iso's · List
C
6
Iso's · List
N
7
Iso's · List
O
8
Iso's · List
F
9
Iso's · List
Ne
10
3
Iso's · List
Na
11
Iso's · List
Mg
12
Iso's · List
Al
13
Iso's · List
Si
14
Iso's · List
P
15
Iso's · List
S
16
Iso's · List
Cl
17
Iso's · List
Ar
18
4
Iso's · List
K
19
Iso's · List
Ca
20
Iso's · List
Sc
21
Iso's · List
Ti
22
Iso's · List
V
23
Iso's · List
Cr
24
Iso's · List
Mn
25
Iso's · List
Fe
26
Iso's · List
Co
27
Iso's · List
Ni
28
Iso's · List
Cu
29
Iso's · List
Zn
30
Iso's · List
Ga
31
Iso's · List
Ge
32
Iso's · List
As
33
Iso's · List
Se
34
Iso's · List
Br
35
Iso's · List
Kr
36
5
Iso's · List
Rb
37
Iso's · List
Sr
38
Iso's · List
Y
39
Iso's · List
Zr
40
Iso's · List
Nb
41
Iso's · List
Mo
42
Iso's · List
Tc
43
Iso's · List
Ru
44
Iso's · List
Rh
45
Iso's · List
Pd
46
Iso's · List
Ag
47
Iso's · List
Cd
48
Iso's · List
In
49
Iso's · List
Sn
50
Iso's · List
Sb
51
Iso's · List
Te
52
Iso's · List
I
53
Iso's · List
Xe
54
6
Iso's · List
Cs
55
Iso's · List
Ba
56
Iso's · List
La
57
Iso's · List
Hf
72
Iso's · List
Ta
73
Iso's · List
W
74
Iso's · List
Re
75
Iso's · List
Os
76
Iso's · List
Ir
77
Iso's · List
Pt
78
Iso's · List
Au
79
Iso's · List
Hg
80
Iso's · List
Tl
81
Iso's · List
Pb
82
Iso's · List
Bi
83
Iso's · List
Po
84
Iso's · List
At
85
Iso's · List
Rn
86
7
Iso's · List
Fr
87
Iso's · List
Ra
88
Iso's · List
Ac
89
Iso's · List
Rf
104
Iso's · List
Db
105
Iso's · List
Sg
106
Iso's · List
Bh
107
Iso's · List
Hs
108
Iso's · List
Mt
109
Iso's · List
Ds
110
Iso's · List
Rg
111
Iso's · List
Cn
112
Iso's · List
Nh
113
Iso's · List
Fl
114
Iso's · List
Mc
115
Iso's · List
Lv
116
Iso's · List
Ts
117
Iso's · List
Og
118
Iso's · List
Ce
58
Iso's · List
Pr
59
Iso's · List
Nd
60
Iso's · List
Pm
61
Iso's · List
Sm
62
Iso's · List
Eu
63
Iso's · List
Gd
64
Iso's · List
Tb
65
Iso's · List
Dy
66
Iso's · List
Ho
67
Iso's · List
Er
68
Iso's · List
Tm
69
Iso's · List
Yb
70
Iso's · List
Lu
71
Iso's · List
Th
90
Iso's · List
Pa
91
Iso's · List
U
92
Iso's · List
Np
93
Iso's · List
Pu
94
Iso's · List
Am
95
Iso's · List
Cm
96
Iso's · List
Bk
97
Iso's · List
Cf
98
Iso's · List
Es
99
Iso's · List
Fm
100
Iso's · List
Md
101
Iso's · List
No
102
Iso's · List
Lr
103
Table of nuclides
Categories: Isotopes
Tables of nuclides
Metastable isotopes
Isotopes by element
0.00
(0 votes)
Original source: https://en.wikipedia.org/wiki/Isotopes of nihonium. Read more