Partial Algebra

From Handwiki

In abstract algebra, a partial algebra is a generalization of universal algebra to partial operations.[1][2]

Example(s)

  • partial groupoid
  • field — the multiplicative inversion is the only proper partial operation[1]
  • effect algebras[3]

Structure

There is a "Meta Birkhoff Theorem" by Andreka, Nemeti and Sain (1982).[1]

References

  1. 1.0 1.1 1.2 Peter Burmeister (1993). "Partial algebras—an introductory survey". Algebras and Orders. Springer Science & Business Media. pp. 1–70. ISBN 978-0-7923-2143-9. 
  2. George A. Grätzer (2008). Universal Algebra (2nd ed.). Springer Science & Business Media. Chapter 2. Partial algebras. ISBN 978-0-387-77487-9. https://archive.org/details/isbn_9780387774862. 
  3. Foulis, D. J.; Bennett, M. K. (1994). "Effect algebras and unsharp quantum logics". Foundations of Physics 24 (10): 1331. doi:10.1007/BF02283036. 

Further reading

  • Peter Burmeister (2002). A Model Theoretic Oriented Approach to Partial Algebras. 
  • Horst Reichel (1984). Structural induction on partial algebras. Akademie-Verlag. 
  • Horst Reichel (1987). Initial computability, algebraic specifications, and partial algebras. Clarendon Press. ISBN 978-0-19-853806-6. 




Retrieved from "https://handwiki.org/wiki/index.php?title=Partial_algebra&oldid=3004470"

Categories: [Algebraic structures]


Download as ZWI file | Last modified: 12/12/2023 16:21:30 | 14 views
☰ Source: https://handwiki.org/wiki/Partial_algebra | License: CC BY-SA 3.0

ZWI signed:
  Encycloreader by the Knowledge Standards Foundation (KSF) ✓[what is this?]