Short description: Quantum field theory with a Lie group base manifold
Group field theory (GFT) is a quantum field theory in which the base manifold is taken to be a Lie group. It is closely related to background independent quantum gravity approaches such as loop quantum gravity, the spin foam formalism and causal dynamical triangulation. It can be shown that its perturbative expansion can be interpreted as spin foams and simplicial pseudo-manifolds (depending on the representation of the fields). Thus, its partition function defines a non-perturbative sum over all simplicial topologies and geometries, giving a path integral formulation of quantum spacetime.
See also
- Shape dynamics
- Causal Sets
- Fractal cosmology
- Loop quantum gravity
- Planck scale
- Quantum gravity
- Regge calculus
- Simplex
- Simplicial manifold
- Spin foam
References
- Wayback Machine see Sec 6.8 Dynamics: III. Group field theory
- Freidel, L. (2005). "Group Field Theory: An Overview". International Journal of Theoretical Physics 44 (10): 1769–1783. doi:10.1007/s10773-005-8894-1. Bibcode: 2005IJTP...44.1769F.
- Oriti, Daniele (2006). The group field theory approach to quantum gravity. Bibcode: 2006gr.qc.....7032O.
- Oriti, Daniele (2009). The Group Field Theory Approach to Quantum Gravity: A QFT for the Microstructure of Spacetime. http://fqxi.org/data/documents/Oriti Azores Talk.pdf.
- Geloun, Joseph Ben; Krajewski, Thomas; Magnen, Jacques; Rivasseau, Vincent (2010). "Linearized group field theory and power-counting theorems". Classical and Quantum Gravity 27 (15): 155012. doi:10.1088/0264-9381/27/15/155012. Bibcode: 2010CQGra..27o5012B.
- Ben Geloun, J.; Gurau, R.; Rivasseau, V. (2010). "EPRL/FK group field theory". Europhysics Letters 92 (6): 60008. doi:10.1209/0295-5075/92/60008. Bibcode: 2010EL.....9260008B.
- Ashtekar, Abhay; Campiglia, Miguel; Henderson, Adam (2009). "Loop quantum cosmology and spin foams". Physics Letters B 681 (4): 347–352. doi:10.1016/j.physletb.2009.10.042. Bibcode: 2009PhLB..681..347A.
- Fairbairn, Winston J.; Livine, Etera R. (2007). "3D spinfoam quantum gravity: Matter as a phase of the group field theory". Classical and Quantum Gravity 24 (20): 5277–5297. doi:10.1088/0264-9381/24/20/021. Bibcode: 2007CQGra..24.5277F.
- Alexandrov, Sergei; Roche, Philippe (2011). "Critical overview of loops and foams". Physics Reports 506 (3–4): 41–86. doi:10.1016/j.physrep.2011.05.002. Bibcode: 2011PhR...506...41A.
- Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo (2013). "Cosmology from Group Field Theory Formalism for Quantum Gravity". Physical Review Letters 111 (3): 031301. doi:10.1103/PhysRevLett.111.031301. PMID 23909305. Bibcode: 2013PhRvL.111c1301G.
Quantum gravity |
|---|
| Central concepts |
- AdS/CFT correspondence
- Causal patch
- Gravitational anomaly
- Graviton
- Holographic principle
- IR/UV mixing
- Planck scale
- Quantum foam
- Trans-Planckian problem
- Weinberg–Witten theorem
|
|---|
| Toy models |
- 2+1D topological gravity
- CGHS model
- Jackiw–Teitelboim gravity
- Liouville gravity
- RST model
- Topological quantum field theory
|
|---|
Quantum field theory in curved spacetime |
- Bunch–Davies vacuum
- Hawking radiation
- Semiclassical gravity
- Unruh effect
|
|---|
| Black holes |
- Black hole complementarity
- Black hole information paradox
- Black-hole thermodynamics
- Bousso's holographic bound
- ER=EPR
- Firewall (physics)
- Gravitational singularity
|
|---|
| Approaches | | String theory |
- Bosonic string theory
- M-theory
- Supergravity
- Superstring theory
|
|---|
| Canonical quantum gravity |
- Loop quantum gravity
- Wheeler–DeWitt equation
|
|---|
| Euclidean quantum gravity | |
|---|
| Others |
- Causal dynamical triangulation
- Causal sets
- Noncommutative geometry
- Spin foam
- Group field theory
- Superfluid vacuum theory
- Twistor theory
- Dual graviton
|
|---|
|
|---|
| Applications |
- Quantum cosmology
- Eternal inflation
- Multiverse
- FRW/CFT duality
|
|---|
 | Original source: https://en.wikipedia.org/wiki/Group field theory. Read more |