Short description: Concept in model theory
In model theory, a branch of mathematical logic, the diagram of a structure is a simple but powerful concept for proving useful properties of a theory, for example the amalgamation property and the joint embedding property, among others.
Definition
Let [math]\displaystyle{ \mathcal L }[/math] be a first-order language and [math]\displaystyle{ T }[/math] be a theory over [math]\displaystyle{ \mathcal L. }[/math] For a model [math]\displaystyle{ \mathfrak A }[/math] of [math]\displaystyle{ T }[/math] one expands [math]\displaystyle{ \mathcal L }[/math] to a new language
- [math]\displaystyle{ \mathcal L_A := \mathcal L\cup \{c_a:a\in A\} }[/math]
by adding a new constant symbol [math]\displaystyle{ c_a }[/math] for each element [math]\displaystyle{ a }[/math] in [math]\displaystyle{ A, }[/math] where [math]\displaystyle{ A }[/math] is a subset of the domain of [math]\displaystyle{ \mathfrak A. }[/math] Now one may expand [math]\displaystyle{ \mathfrak A }[/math] to the model
- [math]\displaystyle{ \mathfrak A_A := (\mathfrak A,a)_{a\in A}. }[/math]
The positive diagram of [math]\displaystyle{ \mathfrak A }[/math], sometimes denoted [math]\displaystyle{ D^+(\mathfrak A) }[/math], is the set of all those atomic sentences which hold in [math]\displaystyle{ \mathfrak A }[/math] while the negative diagram, denoted [math]\displaystyle{ D^-(\mathfrak A), }[/math] thereof is the set of all those atomic sentences which do not hold in [math]\displaystyle{ \mathfrak A }[/math].
The diagram [math]\displaystyle{ D(\mathfrak A) }[/math] of [math]\displaystyle{ \mathfrak A }[/math] is the set of all atomic sentences and negations of atomic sentences of [math]\displaystyle{ \mathcal L_A }[/math] that hold in [math]\displaystyle{ \mathfrak A_A. }[/math][1][2] Symbolically, [math]\displaystyle{ D(\mathfrak A) = D^+(\mathfrak A) \cup \neg D^-(\mathfrak A) }[/math].
See also
References
- ↑ Hodges, Wilfrid (1993). Model theory. Cambridge University Press. ISBN 9780521304429. https://archive.org/details/modeltheory0000hodg.
- ↑ Chang, C. C.; Keisler, H. Jerome (2012). Model Theory (Third ed.). Dover Publications. pp. 672 pages.
Mathematical logic |
|---|
| General |
- Formal language
- Formation rule
- Formal proof
- Formal semantics
- Well-formed formula
- Set
- Element
- Class
- Classical logic
- Axiom
- Rule of inference
- Relation
- Theorem
- Logical consequence
- Type theory
- Symbol
- Syntax
- Theory
|
|---|
| Systems |
- Formal system
- Deductive system
- Axiomatic system
- Hilbert style systems
- Natural deduction
- Sequent calculus
|
|---|
| Traditional logic |
- Proposition
- Inference
- Argument
- Validity
- Cogency
- Syllogism
- Square of opposition
- Venn diagram
|
|---|
Propositional calculus and Boolean logic |
- Boolean functions
- Propositional calculus
- Propositional formula
- Logical connectives
- Truth tables
- Many-valued logic
|
|---|
| Predicate logic |
- First-order
- Quantifiers
- Predicate
- Second-order
- Monadic predicate calculus
|
|---|
| Naive set theory |
- Set
- Empty set
- Element
- Enumeration
- Extensionality
- Finite set
- Infinite set
- Subset
- Power set
- Countable set
- Uncountable set
- Recursive set
- Domain
- Codomain
- Image
- Map
- Function
- Relation
- Ordered pair
|
|---|
| Set theory |
- Foundations of mathematics
- Zermelo–Fraenkel set theory
- Axiom of choice
- General set theory
- Kripke–Platek set theory
- Von Neumann–Bernays–Gödel set theory
- Morse–Kelley set theory
- Tarski–Grothendieck set theory
|
|---|
| Model theory |
- Model
- Interpretation
- Non-standard model
- Finite model theory
- Truth value
- Validity
|
|---|
| Proof theory |
- Formal proof
- Deductive system
- Formal system
- Theorem
- Logical consequence
- Rule of inference
- Syntax
|
|---|
Computability theory |
- Recursion
- Recursive set
- Recursively enumerable set
- Decision problem
- Church–Turing thesis
- Computable function
- Primitive recursive function
|
|---|
 | Original source: https://en.wikipedia.org/wiki/Diagram (mathematical logic). Read more |