Incomplete Polylogarithm

From Handwiki

In mathematics, the Incomplete Polylogarithm function is related to the polylogarithm function. It is sometimes known as the incomplete Fermi–Dirac integral or the incomplete Bose–Einstein integral. It may be defined by:

[math]\displaystyle{ \operatorname{Li}_s(b,z) = \frac{1}{\Gamma(s)}\int_b^\infty \frac{x^{s-1}}{e^{x}/z-1}~dx. }[/math]

Expanding about z=0 and integrating gives a series representation:

[math]\displaystyle{ \operatorname{Li}_s(b,z) = \sum_{k=1}^\infty \frac{z^k}{k^s}~\frac{\Gamma(s,kb)}{\Gamma(s)} }[/math]

where Γ(s) is the gamma function and Γ(s,x) is the upper incomplete gamma function. Since Γ(s,0)=Γ(s), it follows that:

[math]\displaystyle{ \operatorname{Li}_s(0,z) =\operatorname{Li}_s(z) }[/math]

where Lis(.) is the polylogarithm function.

References

  • GNU Scientific Library - Reference Manual https://www.gnu.org/software/gsl/manual/gsl-ref.html#SEC117



Retrieved from "https://handwiki.org/wiki/index.php?title=Incomplete_polylogarithm&oldid=57314"

Categories: [Special functions]


Download as ZWI file | Last modified: 03/09/2024 10:07:34 | 20 views
☰ Source: https://handwiki.org/wiki/Incomplete_polylogarithm | License: CC BY-SA 3.0

ZWI is not signed. [what is this?]