Discrete Norm

From Encyclopediaofmath


A norm on a skew-field the group of values of which is isomorphic to the group of integers $ \mathbf Z $. In such a case the ring is a discretely-normed ring. A discrete norm, more exactly, a discrete norm of height (or rank) $ r $ is also sometimes understood as the norm having as group of values the $ r $- th direct power of the group $ \mathbf Z $ with the lexicographical order.

Comments[edit]

This notion is more commonly called a discrete valuation. A discretely-normed ring is usually called a discrete valuation domain. See also Norm on a field; Valuation.

References[edit]

[a1] O. Endler, "Valuation theory" , Springer (1972)


Download as ZWI file | Last modified: 12/26/2025 12:17:54 | 6 views
☰ Source: https://encyclopediaofmath.org/wiki/Discrete_norm | License: CC BY-SA 3.0

ZWI is not signed. [what is this?]