This is a dynamic list and may never be able to satisfy particular standards for completeness. You can help by expanding it with reliably sourced entries.
The table below shows some of the parameters of common superconductors. X:Y means material X doped with element Y, TC is the highest reported transition temperature in kelvins and HC is a critical magnetic field in tesla. "BCS" means whether or not the superconductivity is explained within the BCS theory.
Contents
1List
2Notes
3References
4External links
List
Substance
Class
TC (K)
HC (T)
Type
BCS
References
Al
Element
1.20
0.01
I
yes
[1][2][3]
Bi
Element
5.3×10−4
5.2×10−6
I
no
[note 1][4]
Cd
Element
0.52
0.0028
I
yes
[2][3]
Diamond:B
Element
11.4
4
II
yes
[5][6][7]
Ga
Element
1.083
0.0058
I
yes
[2][3][8]
Hf
Element
0.165
I
yes
[2]
α-Hg
Element
4.15
0.04
I
yes
[2][3]
β-Hg
Element
3.95
0.04
I
yes
[2][3]
In
Element
3.4
0.03
I
yes
[2][3]
Ir
Element
0.14
0.0016
I
yes
[2][8]
α-La
Element
4.9
I
yes
[2]
β-La
Element
6.3
I
yes
[2]
Li
Element
4×10−4
I
[9]
Mo
Element
0.92
0.0096
I
yes
[2][8]
Nb
Element
9.26
0.82
II
yes
[2][3]
Os
Element
0.65
0.007
I
yes
[2]
Pa
Element
1.4
I
yes
[10]
Pb
Element
7.19
0.08
I
yes
[2][3]
Re
Element
2.4
0.03
I
yes
[2][3][11]
Rh
Element
3.25×10−4
4.9×10−6
I
[12]
Ru
Element
0.49
0.005
I
yes
[2][3]
Si:B
Element
0.4
0.4
II
yes
[13]
Sn
Element
3.72
0.03
I
yes
[2][3]
Ta
Element
4.48
0.09
I
yes
[2][3]
Tc
Element
7.46–11.2
0.04
II
yes
[2][3]
α-Th
Element
1.37
0.013
I
yes
[2][3]
Ti
Element
0.39
0.01
I
yes
[2][3]
Tl
Element
2.39
0.02
I
yes
[2][3]
α-U
Element
0.68
I
yes
[2][10]
β-U
Element
1.8
I
yes
[10]
V
Element
5.03
1
II
yes
[2][3]
α-W
Element
0.015
0.00012
I
yes
[8][10][14]
β-W
Element
1–4
[14]
Zn
Element
0.855
0.005
I
yes
[2][3]
Zr
Element
0.55
0.014
I
yes
[2][3]
Ba8Si46
Clathrate
8.07
0.008
II
yes
[15]
CaH 6
Clathrate
215 (172 GPa)
[16][17]
C6Ca
Compound
11.5
0.95
II
[18]
C6Li3Ca2
Compound
11.15
II
[18]
C8K
Compound
0.14
II
[18]
C8KHg
Compound
1.4
II
[18]
C6K
Compound
1.5
II
[19]
C3K
Compound
3.0
II
[19]
C3Li
Compound
<0.35
II
[19]
C2Li
Compound
1.9
II
[19]
C3Na
Compound
2.3–3.8
II
[19]
C2Na
Compound
5.0
II
[19]
C8Rb
Compound
0.025
II
[18]
C6Sr
Compound
1.65
II
[18]
Sr2RuO4
Compound
0.93
II
[20]
C6Yb
Compound
6.5
II
[18]
C60Cs2Rb
Compound
33
II
yes
[21]
C60K3
Compound
19.8
0.013
II
yes
[15][22]
C60RbX
Compound
28
II
yes
[23]
C60Cs3
Compound
38
FeB4
Compound
2.9
II
[24]
InN
Compound
3
II
yes
[25]
In2O3
Compound
3.3
~3
II
yes
[26]
LaB6
Compound
0.45
yes
[27]
La3Ni2O7
Nickelate
80 (>14 GPa)
[28]
MgB2
Compound
39
74
II
yes
[29]
Nb3Al
Compound
18
II
yes
[2]
NbC1-xNx
Compound
17.8
12
II
yes
[30][31]
Nb3Ge
Compound
23.2
37
II
yes
[32]
NbO
Compound
1.38
II
yes
[33]
NbN
Compound
16
II
yes
[2]
Nb3Sn
Compound
18.3
30
II
yes
[34]
NbTi
Compound
10
15
II
yes
[2]
SiC:B
Compound
1.4
0.008
I
yes
[35]
SiC:Al
Compound
1.5
0.04
II
yes
[35]
TiN
Compound
5.6
5
I
yes
[36][37][38]
V3Si
Compound
17
[39]
YB6
Compound
8.4
II
yes
[40][41][42]
ZrN
Compound
10
yes
[43]
ZrB12
Compound
6.0
II
yes
[42]
UTe2
Compound
2.0
no
[44]
CuBa0.15La1.85O4
Cuprate
52.5
[45]
YBCO
Cuprate
95
120–250
II
no
EuBCO
Cuprate
93
II
no
[46]
GdBCO
Cuprate
91
II
no
[47]
BSCCO
Cuprate
104
HBCCO
Cuprate
135
SmFeAs(O,F)
Iron-based
55
CeFeAs(O,F)
Iron-based
41
LaFeAs(O,F)
Iron-based
26
LaFeSiH
Iron-based
11
LaFePO
Iron-based
4
FeSe:SrTiO3
Iron-based
60-100
(Ba,K)Fe2As2
Iron-based
38
NaFeAs
Iron-based
20
HgTlBaCaCuO
Compound
164
II
H2S
Polyhydride
203 (155 GPa)
II
LaH 10
Polyhydride
250 (150 GPa)
[48]
Yb
Element
1.4 (>86 GPa)
no
[49]
Notes
↑According to,[4] superconductivity in Bi is not compatible with conventional BCS theory because the Fermi energy of Bi is comparable to the phonon energy (Debye frequency).
References
↑Cochran, J. F.; Mapother, D. E. (1958). "Superconducting Transition in Aluminum". Physical Review111 (1): 132–142. doi:10.1103/PhysRev.111.132. Bibcode: 1958PhRv..111..132C.
↑ 2.002.012.022.032.042.052.062.072.082.092.102.112.122.132.142.152.162.172.182.192.202.212.222.232.242.252.262.272.28Matthias, B. T.; Geballe, T. H.; Compton, V. B. (1963). "Superconductivity". Reviews of Modern Physics35 (1): 1–22. doi:10.1103/RevModPhys.35.1. Bibcode: 1963RvMP...35....1M.
↑ 3.003.013.023.033.043.053.063.073.083.093.103.113.123.133.143.153.163.173.18Eisenstein, J. (1954). "Superconducting Elements". Reviews of Modern Physics26 (3): 277–291. doi:10.1103/RevModPhys.26.277. Bibcode: 1954RvMP...26..277E.
↑ 4.04.1Prakash, O. (2017). "Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure". Science355 (6320): 52–55. doi:10.1126/science.aaf8227. PMID 27934703. Bibcode: 2017Sci...355...52P.
↑Ekimov, E. A.; Sidorov, V. A.; Bauer, E. D.; Mel'Nik, N. N.; Curro, N. J.; Thompson, J. D.; Stishov, S. M. (2004). "Superconductivity in diamond". Nature428 (6982): 542–545. doi:10.1038/nature02449. PMID 15057827. Bibcode: 2004Natur.428..542E.
↑Ekimov, E. A.; Sidorov, V. A.; Zoteev, A. V.; Lebed, Y. B.; Thompson, J. D.; Stishov, S. M. (2008). "Structure and superconductivity of isotope-enriched boron-doped diamond". Science and Technology of Advanced Materials9 (4): 044210. doi:10.1088/1468-6996/9/4/044210. PMID 27878027. Bibcode: 2008STAdM...9d4210E.
↑Takano, Y.; Takenouchi, T.; Ishii, S.; Ueda, S.; Okutsu, T.; Sakaguchi, I.; Umezawa, H.; Kawarada, H. et al. (2007). "Superconducting properties of homoepitaxial CVD diamond". Diamond and Related Materials16 (4–7): 911. doi:10.1016/j.diamond.2007.01.027. Bibcode: 2007DRM....16..911T.
↑ 8.08.18.28.3Kaxiras, Efthimios (2003). Atomic and electronic structure of solids. Cambridge University Press. p. 283. ISBN 0-521-52339-7. https://books.google.com/books?id=ULXZwEJeElYC&pg=PA283.
↑Tuoriniemi, J. (2007). "Superconductivity in lithium below 0.4 millikelvin at ambient pressure". Nature447 (7141): 187–189. doi:10.1038/nature05820. PMID 17495921. Bibcode: 2007Natur.447..187T. https://zenodo.org/record/996565.
↑ 10.010.110.210.3Fowler, R. D.; Matthias, B. T.; Asprey, L. B.; Hill, H. H.; Lindsay, J. D. G.; Olsen, C. E.; White, R. W. (1965). "Superconductivity of Protactinium". Physical Review Letters15 (22): 860. doi:10.1103/PhysRevLett.15.860. Bibcode: 1965PhRvL..15..860F.
↑Daunt, J. G.; Smith, T. S. (1952). "Superconductivity of Rhenium". Physical Review88 (2): 309. doi:10.1103/PhysRev.88.309. Bibcode: 1952PhRv...88..309D.
↑Buchal, Ch. (1983). "Superconductivity of Rhodium at Ultralow Temperatures". Phys. Rev. Lett.50 (1): 64–67. doi:10.1103/PhysRevLett.50.64. Bibcode: 1983PhRvL..50...64B.
↑ 14.014.1Lita, A. E.; Rosenberg, D.; Nam, S.; Miller, A. J.; Balzar, D.; Kaatz, L. M.; Schwall, R. E. (2005). "Tuning of Tungsten Thin Film Superconducting Transition Temperature for Fabrication of Photon Number Resolving Detectors". IEEE Transactions on Applied Superconductivity15 (2): 3528. doi:10.1109/TASC.2005.849033. Bibcode: 2005ITAS...15.3528L. https://zenodo.org/record/1232239.
↑ 15.015.1Rachi, T.; Kumashiro, R.; Fukuoka, H.; Yamanaka, S.; Tanigaki, K. (2006). "Sp3-network superconductors made from IVth-group elements". Science and Technology of Advanced Materials7: S88–S93. doi:10.1016/j.stam.2006.04.006. Bibcode: 2006STAdM...7S..88R.
↑Ma, Liang; Wang, Kui; Xie, Yu; Yang, Xin; Wang, Yingying; Zhou, Mi; Liu, Hanyu; Yu, Xiaohui et al. (2022-04-20). "High-Temperature Superconducting Phase in Clathrate Calcium Hydride ${\mathrm{CaH}}_{6}$ up to 215 K at a Pressure of 172 GPa". Physical Review Letters128 (16): 167001. doi:10.1103/PhysRevLett.128.167001. PMID 35522494. https://link.aps.org/doi/10.1103/PhysRevLett.128.167001.
↑Wells, Sarah (2022-04-20). "Elusive Superconducting Superhydride Synthesized" (in en). Physics15. doi:10.1103/Physics.15.s53. Bibcode: 2022PhyOJ..15..s53W. https://physics.aps.org/articles/v15/s53.
↑ 18.018.118.218.318.418.518.6Emery, N.; Hérold, C.; Marêché, J. F. O.; Lagrange, P. (2008). "Synthesis and superconducting properties of CaC6". Science and Technology of Advanced Materials9 (4): 044102. doi:10.1088/1468-6996/9/4/044102. PMID 27878015. Bibcode: 2008STAdM...9d4102E.
↑ 19.019.119.219.319.419.5Belash, I. T.; Zharikov, O. V.; Palnichenko, A. V. (1989). "Superconductivity of GIC with Li, Na and K". Synthetic Metals34 (1–3): 455–460. doi:10.1016/0379-6779(89)90424-4.
↑Maeno, Yoshiteru; Rice, T. Maurice; Sigrist, Manfred (2001). "The Intriguing Superconductivity of Strontium Ruthenate" (in en). Physics Today54 (1): 42–47. doi:10.1063/1.1349611. ISSN 0031-9228. Bibcode: 2001PhT....54a..42M. http://physicstoday.scitation.org/doi/10.1063/1.1349611.
↑Tanigaki, K.; Ebbesen, T. W.; Saito, S.; Mizuki, J.; Tsai, J. S.; Kubo, Y.; Kuroshima, S. (1991). "Superconductivity at 33 K in CsxRbyC60". Nature352 (6332): 222. doi:10.1038/352222a0. Bibcode: 1991Natur.352..222T.
↑Xiang, X. -D.; Hou, J. G.; Briceno, G.; Vareka, W. A.; Mostovoy, R.; Zettl, A.; Crespi, V. H.; Cohen, M. L. (1992). "Synthesis and Electronic Transport of Single Crystal K3C60". Science256 (5060): 1190–1. doi:10.1126/science.256.5060.1190. PMID 17795215. Bibcode: 1992Sci...256.1190X.
↑Rosseinsky, M.; Ramirez, A.; Glarum, S.; Murphy, D.; Haddon, R.; Hebard, A.; Palstra, T.; Kortan, A. et al. (1991). "Superconductivity at 28 K in RbxC60". Physical Review Letters66 (21): 2830–2832. doi:10.1103/PhysRevLett.66.2830. PMID 10043627. Bibcode: 1991PhRvL..66.2830R. https://pure.rug.nl/ws/files/14557802/1991PhysRevLettRosseinsky.pdf.
↑Inushima, T. (2006). "Electronic structure of superconducting InN". Science and Technology of Advanced Materials7: S112–S116. doi:10.1016/j.stam.2006.06.004. Bibcode: 2006STAdM...7S.112I.
↑Makise, K.; Kokubo, N.; Takada, S.; Yamaguti, T.; Ogura, S.; Yamada, K.; Shinozaki, B.; Yano, K. et al. (2008). "Superconductivity in transparent zinc-doped In2O3 films having low carrier density". Science and Technology of Advanced Materials9 (4): 044208. doi:10.1088/1468-6996/9/4/044208. PMID 27878025. Bibcode: 2008STAdM...9d4208M.
↑Schell, G.; Winter, H.; Rietschel, H.; Gompf, F. (1982). "Electronic structure and superconductivity in metal hexaborides". Physical Review B25 (3): 1589. doi:10.1103/PhysRevB.25.1589. Bibcode: 1982PhRvB..25.1589S.
↑Sun, Hualei; Huo, Mengwu; Hu, Xunwu; Li, Jingyuan; Liu, Zengjia; Han, Yifeng; Tang, Lingyun; Mao, Zhongquan et al. (2023-09-21). "Signatures of superconductivity near 80 K in a nickelate under high pressure" (in en). Nature621 (7979): 493–498. doi:10.1038/s41586-023-06408-7. ISSN 0028-0836. PMID 37437603. Bibcode: 2023Natur.621..493S. https://www.nature.com/articles/s41586-023-06408-7.
↑Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. (2001). "Superconductivity at 39 K in magnesium diboride". Nature410 (6824): 63–4. doi:10.1038/35065039. PMID 11242039. Bibcode: 2001Natur.410...63N. https://www.researchgate.net/publication/12090250.
↑Bernhardt, K.-H. (1975). "Preparation and Superconducting Properties of Niobium Carbonitride Wires". Z. Naturforsch. A30 (4): 528–532. doi:10.1515/zna-1975-0422. Bibcode: 1975ZNatA..30..528B. http://zfn.mpdl.mpg.de/data/Reihe_A/30/ZNA-1975-30a-0528.pdf.
↑Pessall, N.; Jones, C. K.; Johansen, and J. K. Hulm Bernhardt, H. A.; Hulm, J. K. (1965). "Critical Supercurrents in Niobium Carbonitrides". Appl. Phys. Lett.7 (2): 38–39. doi:10.1063/1.1754287. Bibcode: 1965ApPhL...7...38P.
↑Oya, G. I.; Saur, E. J. (1979). "Preparation of Nb3Ge films by chemical transport reaction and their critical properties". Journal of Low Temperature Physics34 (5–6): 569. doi:10.1007/BF00114941. Bibcode: 1979JLTP...34..569O.
↑Hulm, J. K.; Jones, C. K.; Hein, R. A.; Gibson, J. W. (1972). "Superconductivity in the TiO and NbO systems". Journal of Low Temperature Physics7 (3–4): 291. doi:10.1007/BF00660068. Bibcode: 1972JLTP....7..291H.
↑Matthias, B. T.; Geballe, T. H.; Geller, S.; Corenzwit, E. (1954). "Superconductivity of Nb3Sn". Physical Review95 (6): 1435. doi:10.1103/PhysRev.95.1435. Bibcode: 1954PhRv...95.1435M.
↑ 35.035.1Muranaka, T.; Kikuchi, Y.; Yoshizawa, T.; Shirakawa, N.; Akimitsu, J. (2008). "Superconductivity in carrier-doped silicon carbide". Science and Technology of Advanced Materials9 (4): 044204. doi:10.1088/1468-6996/9/4/044204. PMID 27878021. Bibcode: 2008STAdM...9d4204M.
↑Pierson, Hugh O. (1996). Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications. William Andrew. p. 193. ISBN 0-8155-1392-5. https://books.google.com/books?id=pbt-RWodmVAC&pg=PA193.
↑Troitskii, V. N.; Marchenko, V. A.; Domashnev, I. A. (1982). "Magnetic properties of titanium nitride in superconducting state". Soviet Physics - Solid State24 (4): 689–690. https://inis.iaea.org/search/search.aspx?orig_q=RN:14791809.
↑Pracht, Uwe S.; Scheffler, Marc; Dressel, Martin; Kalok, David F.; Strunk, Christoph; Baturina, Tatyana I. (2012-11-05). "Direct observation of the superconducting gap in a thin film of titanium nitride using terahertz spectroscopy". Physical Review B86 (18): 184503. doi:10.1103/PhysRevB.86.184503. Bibcode: 2012PhRvB..86r4503P.
↑Tanaka, Shigeki; Handoko; Miyake, Atsushi; Kagayama, Tomoko; Shimizu, Katsuya; Böhmer, Anna. E.; Burger, Philipp; Hardy, Frederic et al. (2012-01-01). "Superconducting and Martensitic Transitions of V3Si and Nb3Sn under High Pressure". Journal of the Physical Society of Japan81 (Suppl.B): SB026. doi:10.1143/JPSJS.81SB.SB026. ISSN 0031-9015. Bibcode: 2012JPSJ...81B..26T.
↑Fisk, Z.; Schmidt, P. H.; Longinotti, L. D. (1976). "Growth of YB6 single crystals". Materials Research Bulletin11 (8): 1019. doi:10.1016/0025-5408(76)90179-3.
↑Szabó, P.; Kačmarčík, J.; Samuely, P.; Girovský, J. N.; Gabáni, S.; Flachbart, K.; Mori, T. (2007). "Superconducting energy gap of YB6 studied by point-contact spectroscopy". Physica C: Superconductivity460–462: 626–627. doi:10.1016/j.physc.2007.04.135. Bibcode: 2007PhyC..460..626S. https://www.researchgate.net/publication/243241952.
↑ 42.042.1Tsindlekht, M. I.; Genkin, V. M.; Leviev, G. I.; Felner, I.; Yuli, O.; Asulin, I.; Millo, O.; Belogolovskii, M. A. et al. (2008). "Linear and nonlinear low-frequency electrodynamics of surface superconducting states in an yttrium hexaboride single crystal". Physical Review B78 (2): 024522. doi:10.1103/PhysRevB.78.024522. Bibcode: 2008PhRvB..78b4522T.
↑Lengauer, W. (1990). "Characterization of nitrogen distribution profiles in fcc transition metal nitrides by means of Tc measurements". Surface and Interface Analysis15 (6): 377–382. doi:10.1002/sia.740150606.
↑Rosa, Priscila F. S.; Weiland, Ashley; Fender, Shannon S.; Scott, Brian L.; Ronning, Filip; Thompson, Joe D.; Bauer, Eric D.; Thomas, Sean M. (2022-05-23). "Single thermodynamic transition at 2 K in superconducting UTe2 single crystals" (in en). Communications Materials3 (1): 33. doi:10.1038/s43246-022-00254-2. ISSN 2662-4443. Bibcode: 2022CoMat...3...33R. https://www.nature.com/articles/s43246-022-00254-2.
↑Chu, C. W.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J. (1987-01-30). "Superconductivity at 52.5 K in the Lanthanum-Barium-Copper-Oxide System" (in en). Science235 (4788): 567–569. doi:10.1126/science.235.4788.567. ISSN 0036-8075. PMID 17758247. Bibcode: 1987Sci...235..567C. https://www.science.org/doi/10.1126/science.235.4788.567.
↑Malavasi, L.; Tamburini, U. Anselmi; Galinetto, P.; Ghigna, P.; Flor, G. (2001). "The High-Temperature Superconductor EuBa2Cu3O6 + x: Role of Thermal History on Microstructure and Superconducting Properties". Journal of Materials Synthesis and Processing9 (1): 31–37. doi:10.1023/A:1011334631235. https://link.springer.com/article/10.1023/A:1011334631235.
↑Shi, Y; Babu, N Hari; Iida, K; Cardwell, D A (2008-02-01). "Superconducting properties of Gd-Ba-Cu-O single grains processed from a new, Ba-rich precursor compound". Journal of Physics: Conference Series97 (1): 012250. doi:10.1088/1742-6596/97/1/012250. ISSN 1742-6596. Bibcode: 2008JPhCS..97a2250S. http://stacks.iop.org/1742-6596/97/i=1/a=012250?key=crossref.5c72ed8c139dd9caf386e13d8aa7a319.
↑Drozdov, A. P.; Kong, P. P.; Minkov, V. S.; Besedin, S. P.; Kuzovnikov, M. A.; Mozaffari, S.; Balicas, L.; Balakirev, F. F. et al. (May 2019). "Superconductivity at 250 K in lanthanum hydride under high pressures" (in en). Nature569 (7757): 528–531. doi:10.1038/s41586-019-1201-8. ISSN 0028-0836. PMID 31118520. Bibcode: 2019Natur.569..528D. https://www.nature.com/articles/s41586-019-1201-8.
A review of 700 potential superconductors Hosono, H.; Tanabe, K.; Takayama-Muromachi, E.; Kageyama, H.; Yamanaka, S.; Kumakura, H.; Nohara, M.; Hiramatsu, H. et al. (2015). "Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides". Science and Technology of Advanced Materials16 (3): 033503. doi:10.1088/1468-6996/16/3/033503. PMID 27877784. Bibcode: 2015STAdM..16c3503H.
0.00
(0 votes)
Original source: https://en.wikipedia.org/wiki/List of superconductors. Read more