Polymer

From Nwe
Image of a bend in a polyester fiber with a high surface area, as seen at high magnification with a scanning electron microscope. Polyester is a category of thermoplastic polymers.

A polymer (from the Greek words polys, meaning "many," and meros, meaning "parts") is a chemical compound consisting of large molecules, each of which is a long chain made up of small structural units that are linked together by covalent chemical bonds. Each structural unit, called a monomer (Greek word monos means "alone" or "single"), is a small molecule of low-to-moderate molecular weight. Within a given polymer molecule, the monomers are usually identical or similar in structure. The chemical reaction by which monomers are linked together to form polymers is called polymerization.

Polymers form a large, diverse group of materials. Within each living organism, polymers (biopolymers) such as DNA, RNA, proteins, and polysaccharides perform specific functions that enable the organism to survive, grow, and reproduce. In addition, natural polymers—such as cotton, flax, jute, silk, and wool—have long been used for the production of clothing, rope, carpeting, felt, insulation, and upholstery. More recently, scientists have discovered how to produce new polymers with a wide range of properties, at relatively low cost. Their work has given birth to a proliferation of plastics, artificial fibers, and synthetic rubber. Consequently, synthetic polymers are being used for numerous products in homes, schools, offices, factories, recreational facilities, and means of transportation and communication. Thus, artificial polymers have become an integral part of our modern technological society.

On the downside, most artificial polymers are not biodegradable, and factories and incineration furnaces often release chemical pollutants. To help solve these problems, recycling programs have been instituted in many countries, and manufacturing plants and incinerators are now fitted with pollutant traps. In addition, biodegradable polymers are being sought out.

Close-up of a polyester shirt.

General characteristics and classification

Most polymers are organic—that is, their long chains have backbones of mostly carbon atoms. There are also some inorganic polymers, such as the silicones, which have a backbone of alternating silicon and oxygen atoms.

Polymer chains may or may not be cross-linked with one another. Thus the molecules of a polymer can have various topologies (shapes), such as linear (unbranched), branched, network (cross-linked 3-dimensional structure), comb, or star. The properties of a polymer depend on these shapes and on the structures of the monomers that make up the chains. For example, branched polymer chains cannot line up as close to one another as linear chains can. As a result, intermolecular bonds between branched chains are weaker, and such materials have lower densities, lower melting points, and lower tensile strength. Also, properties such as the solubility, flexibility, and strength of the polymer vary according to the types of monomers in the chains.

Polymers are typically classified as follows:

Synthetic polymers are often named after the monomer from which they are made. For example, polyethene (also called polyethylene) is the name given to the polymer formed when thousands of ethene (ethylene) molecules are bonded together. The polyethene molecules are straight or branched chains of repeating -CH2-CH2- units (with a -CH3 at each terminus). The polymerization reaction can be written as follows.

Example polymerization.png

The product may also be written as:

Polyethene monomer.png

By contrast, biopolymers have been named apart from their monomeric constitution. For instance, proteins are polymers of amino acids. Typically, each protein chain is made up of hundreds of amino acid monomers, and the sequence of these monomers determines its shape and biological function.

Whereas polyethylene forms spontaneously under the right conditions, the synthesis of biopolymers such as proteins and nucleic acids requires the help of specialized biological machinery, including enzymes that catalyze the reactions. Unlike synthetic polymers, these biopolymers (other than carbohydrates) have exact sequences and lengths. Since the 1950s, catalysts have also revolutionized the development of synthetic polymers. By allowing more careful control over polymerization reactions, polymers with new properties—such as the ability to emit colored light—have been manufactured.

Copolymerization

Copolymerization involves the linking together of two or more different monomers, producing chains with varied properties. For example, a protein can be called a copolymer—one in which different amino acid monomers are linked together. Depending on the sequence of amino acids, the protein chains have different shapes and functions.

When ethene is copolymerized with small amounts of 1-hexene (or 4-methyl-1-pentene), the product is called linear low-density polyethene (LLDPE). The C4 branches resulting from the hexene lower the density and prevent large crystalline regions from forming in the polymer, as they do in high-density polyethene (HDPE). This means that LLDPE can withstand strong tearing forces while maintaining flexibility.

The polymerization reaction may be carried out in a stepwise manner, to produce a structure with long sequences (or blocks) of one monomer alternating with long sequences of the other. The product is called a block copolymer.

In the case of some copolymers, called graft copolymers, entire chains of one kind (such as polystyrene) are made to grow out of the sides of chains of another kind (such as polybutadiene). The resultant product is less brittle and more impact-resistant. Thus, block and graft copolymers can combine the useful properties of both constituents and often behave as quasi-two-phase systems.

The formation of nylon is an example of step-growth polymerization, or condensation polymerization. The two types of monomers can have different R and R' groups, shown in the diagram below. The properties of the nylon can vary, depending on the R and R' groups in the monomers used.

Con polymer.png

The first commercially successful, completely synthetic polymer was nylon 6,6, with four carbon atoms in the R group (adipic acid) and six carbon atoms in the R' group (hexamethylene diamine). Each monomer actually contributes 6 carbon atoms (including the two carboxyl carbons of adipic acid)—hence the name nylon 6,6. In naming nylons, the number of carbons from the diamine is given first, and the number from the diacid, second. Kevlar is an aromatic nylon in which both R and R' are benzene rings.

Copolymers illustrate the point that the repeating unit in a polymer—such as a nylon, polyester, or polyurethane—is often made up of two (or more) monomers.

Physical properties of polymers

Polymer chains have markedly unique physical properties, as follows.

Chemical properties of polymers

The attractive forces between polymer chains play a large part in determining a polymer's properties. Given that polymer chains are so long, these interchain forces are amplified far beyond the attractions between conventional molecules. Also, longer chains are more amorphous (randomly oriented). Polymers can be visualized as tangled spaghetti chains—the more tangled the chains, the more difficult it is to pull any one strand out. These stronger forces typically result in high tensile strength and melting points.

The intermolecular forces in polymers are determined by dipoles in the monomer units. For example, polymers containing amide groups can form hydrogen bonds between adjacent chains. The somewhat positively charged hydrogen atoms in the N-H groups of one chain are strongly attracted to the somewhat negatively charged oxygen atoms in the C=O groups on another. Such strong hydrogen bonds are responsible for the high tensile strength and melting point of Kevlar.

In the case of polyesters, there is dipole-dipole bonding between the oxygen atoms in C=O groups and the hydrogen atoms in C-H groups. Dipole bonding is not as strong as hydrogen bonding, so the polyester's melting point and strength are lower than Kevlar's, but polyesters have greater flexibility.

If one considers polyethene, the monomer units (ethene) have no permanent dipole. Attractive forces between polyethene chains arise from weak van der Waals forces. Molecules can be thought of as being surrounded by a cloud of negative electrons. As two polymer chains approach, their electron clouds repel one another. This has the effect of lowering the electron density on one side of a polymer chain, creating a slight positive charge on this side. This charge is enough to attract the second polymer chain. Van der Waals forces are quite weak, however, so polyethene melts at low temperatures.

Applications

Applications of synthetic polymers

Applications of biopolymers

Natural functions of biopolymers

Examples of thermoplastics

Examples of thermosets

Examples of elastomers

Unsaturated rubbers that can be cured by sulfur vulcanization

Saturated rubbers that cannot be cured by sulfur vulcanization

Other types of elastomers

See also

References
ISBN links support NWE through referral fees

External links

All links retrieved November 24, 2022.

Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

The history of this article since it was imported to New World Encyclopedia:

Note: Some restrictions may apply to use of individual images which are separately licensed.



Download as ZWI file | Last modified: 02/03/2023 22:33:54 | 23 views
☰ Source: https://www.newworldencyclopedia.org/entry/Polymer | License: CC BY-SA 3.0

ZWI signed:
  Encycloreader by the Knowledge Standards Foundation (KSF) ✓[what is this?]