Semiregular Space

From Handwiki

A semiregular space is a topological space whose regular open sets (sets that equal the interiors of their closures) form a base for the topology.[1]

Examples and sufficient conditions

Every regular space is semiregular, and every topological space may be embedded into a semiregular space.[1]

The space [math]\displaystyle{ X = \Reals^2 \cup \{0^*\} }[/math] with the double origin topology[2] and the Arens square[3] are examples of spaces that are Hausdorff semiregular, but not regular.

See also

  • Separation axiom – Axioms in topology defining notions of "separation"

Notes

  1. 1.0 1.1 Willard, Stephen (2004), "14E. Semiregular spaces", General Topology, Dover, p. 98, ISBN 978-0-486-43479-7, https://books.google.com/books?id=-o8xJQ7Ag2cC&pg=PA98 .
  2. Steen & Seebach, example #74
  3. Steen & Seebach, example #80

References

  • Lynn Arthur Steen and J. Arthur Seebach, Jr., Counterexamples in Topology. Springer-Verlag, New York, 1978. Reprinted by Dover Publications, New York, 1995. ISBN:0-486-68735-X (Dover edition).
  • Willard, Stephen (2004). General Topology. Dover Books on Mathematics (First ed.). Mineola, N.Y.: Dover Publications. ISBN 978-0-486-43479-7. OCLC 115240. 



Retrieved from "https://handwiki.org/wiki/index.php?title=Semiregular_space&oldid=2631231"

Categories: [Properties of topological spaces] [Separation axioms]


Download as ZWI file | Last modified: 03/13/2024 08:22:08 | 3 views
☰ Source: https://handwiki.org/wiki/Semiregular_space | License: CC BY-SA 3.0

ZWI is not signed. [what is this?]