From Handwiki This article summarizes equations in the theory of photonics, including geometric optics, physical optics, radiometry, diffraction, and interferometry.
| Quantity (common name/s) | (Common) symbol/s | SI units | Dimension |
|---|---|---|---|
| Object distance | x, s, d, u, x1, s1, d1, u1 | m | [L] |
| Image distance | x', s', d', v, x2, s2, d2, v2 | m | [L] |
| Object height | y, h, y1, h1 | m | [L] |
| Image height | y', h', H, y2, h2, H2 | m | [L] |
| Angle subtended by object | θ, θo, θ1 | rad | dimensionless |
| Angle subtended by image | θ', θi, θ2 | rad | dimensionless |
| Curvature radius of lens/mirror | r, R | m | [L] |
| Focal length | f | m | [L] |
| Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
|---|---|---|---|---|
| Lens power | P | [math]\displaystyle{ P = 1/f \,\! }[/math] | m−1 = D (dioptre) | [L]−1 |
| Lateral magnification | m | [math]\displaystyle{ m = - x_2/x_1 = y_2/y_1 \,\! }[/math] | dimensionless | dimensionless |
| Angular magnification | m | [math]\displaystyle{ m = \theta_2/\theta_1 \,\! }[/math] | dimensionless | dimensionless |
There are different forms of the Poynting vector, the most common are in terms of the E and B or E and H fields.
| Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
|---|---|---|---|---|
| Poynting vector | S, N | [math]\displaystyle{ \mathbf{N} = \frac{1}{\mu_0}\mathbf{E}\times\mathbf{B} = \mathbf{E}\times\mathbf{H} \,\! }[/math] | W m−2 | [M][T]−3 |
| Poynting flux, EM field power flow | ΦS, ΦN | [math]\displaystyle{ \Phi_N = \int_S \mathbf{N} \cdot \mathrm{d}\mathbf{S} \,\! }[/math] | W | [M][L]2[T]−3 |
| RMS Electric field of Light | Erms | [math]\displaystyle{ E_\mathrm{rms} = \sqrt{\langle E^2 \rangle} = E/\sqrt{2}\,\! }[/math] | N C−1 = V m−1 | [M][L][T]−3[I]−1 |
| Radiation momentum | p, pEM, pr | [math]\displaystyle{ p_{EM} = U/c\,\! }[/math] | J s m−1 | [M][L][T]−1 |
| Radiation pressure | Pr, pr, PEM | [math]\displaystyle{ P_{EM} = I/c = p_{EM}/At \,\! }[/math] | W m−2 | [M][T]−3 |
For spectral quantities two definitions are in use to refer to the same quantity, in terms of frequency or wavelength.
| Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
|---|---|---|---|---|
| Radiant energy | Q, E, Qe, Ee | J | [M][L]2[T]−2 | |
| Radiant exposure | He | [math]\displaystyle{ H_e = \mathrm{d} Q/\left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) \,\! }[/math] | J m−2 | [M][T]−3 |
| Radiant energy density | ωe | [math]\displaystyle{ \omega_e = \mathrm{d} Q/\mathrm{d}V \,\! }[/math] | J m−3 | [M][L]−3 |
| Radiant flux, radiant power | Φ, Φe | [math]\displaystyle{ Q = \int \Phi \mathrm{d} t }[/math] | W | [M][L]2[T]−3 |
| Radiant intensity | I, Ie | [math]\displaystyle{ \Phi = I \mathrm{d} \Omega \,\! }[/math] | W sr−1 | [M][L]2[T]−3 |
| Radiance, intensity | L, Le | [math]\displaystyle{ \Phi = \iint L\left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) \mathrm{d} \Omega }[/math] | W sr−1 m−2 | [M][T]−3 |
| Irradiance | E, I, Ee, Ie | [math]\displaystyle{ \Phi = \int E \left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) }[/math] | W m−2 | [M][T]−3 |
| Radiant exitance, radiant emittance | M, Me | [math]\displaystyle{ \Phi = \int M \left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) }[/math] | W m−2 | [M][T]−3 |
| Radiosity | J, Jν, Je, Jeν | [math]\displaystyle{ J = E + M \,\! }[/math] | W m−2 | [M][T]−3 |
| Spectral radiant flux, spectral radiant power | Φλ, Φν, Φeλ, Φeν | [math]\displaystyle{ Q=\iint\Phi_\lambda{\mathrm{d} \lambda \mathrm{d} t} }[/math]
[math]\displaystyle{ Q = \iint \Phi_\nu \mathrm{d} \nu \mathrm{d} t }[/math] |
W m−1 (Φλ) W Hz−1 = J (Φν) |
[M][L]−3[T]−3 (Φλ) [M][L]−2[T]−2 (Φν) |
| Spectral radiant intensity | Iλ, Iν, Ieλ, Ieν | [math]\displaystyle{ \Phi = \iint I_\lambda \mathrm{d} \lambda \mathrm{d} \Omega }[/math]
[math]\displaystyle{ \Phi = \iint I_\nu \mathrm{d} \nu \mathrm{d} \Omega }[/math] |
W sr−1 m−1 (Iλ) W sr−1 Hz−1 (Iν) |
[M][L]−3[T]−3 (Iλ) [M][L]2[T]−2 (Iν) |
| Spectral radiance | Lλ, Lν, Leλ, Leν | [math]\displaystyle{ \Phi = \iiint L_\lambda \mathrm{d} \lambda \left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) \mathrm{d} \Omega }[/math]
[math]\displaystyle{ \Phi = \iiint L_\nu \mathrm{d} \nu \left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) \mathrm{d} \Omega \,\! }[/math] |
W sr−1 m−3 (Lλ) W sr−1 m−2 Hz−1 (Lν) |
[M][L]−1[T]−3 (Lλ) [M][L]−2[T]−2 (Lν) |
| Spectral irradiance | Eλ, Eν, Eeλ, Eeν | [math]\displaystyle{ \Phi = \iint E_\lambda \mathrm{d} \lambda \left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) }[/math]
[math]\displaystyle{ \Phi = \iint E_\nu \mathrm{d} \nu \left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) }[/math] |
W m−3 (Eλ) W m−2 Hz−1 (Eν) |
[M][L]−1[T]−3 (Eλ) [M][L]−2[T]−2 (Eν) |
| Physical situation | Nomenclature | Equations |
|---|---|---|
| Energy density in an EM wave |
|
For a dielectric:
|
| Kinetic and potential momenta (non-standard terms in use) | Potential momentum:
[math]\displaystyle{ \mathbf{p}_\mathrm{p} = q\mathbf{A} \,\! }[/math] Kinetic momentum: [math]\displaystyle{ \mathbf{p}_\mathrm{k} = m\mathbf{v} \,\! }[/math] Cononical momentum: [math]\displaystyle{ \mathbf{p} = m\mathbf{v} + q\mathbf{A} \,\! }[/math] | |
| Irradiance, light intensity |
|
[math]\displaystyle{ I = \langle \mathbf{S} \rangle = E^2_\mathrm{rms}/c\mu_0\,\! }[/math]
At a spherical surface: [math]\displaystyle{ I = \frac{P_0}{\Omega \left | r \right |^2}\,\! }[/math] |
| Doppler effect for light (relativistic) | [math]\displaystyle{ \lambda=\lambda_0\sqrt{\frac{c-v}{c+v}}\,\! }[/math]
[math]\displaystyle{ v=|\Delta\lambda|c/\lambda_0\,\! }[/math] | |
| Cherenkov radiation, cone angle |
|
[math]\displaystyle{ \cos \theta = \frac{c}{n v} = \frac{1}{v\sqrt{\epsilon\mu}} \,\! }[/math] |
| Electric and magnetic amplitudes |
|
For a dielectric
[math]\displaystyle{ \left | \mathbf{E} \right | = \sqrt{\frac{\epsilon}{\mu}} \left | \mathbf{H} \right | \,\! }[/math] |
| EM wave components | Electric
[math]\displaystyle{ \mathbf{E} = \mathbf{E}_0 \sin(kx-\omega t)\,\! }[/math] Magnetic [math]\displaystyle{ \mathbf{B} = \mathbf{B}_0 \sin(kx-\omega t)\,\! }[/math] |
| Physical situation | Nomenclature | Equations |
|---|---|---|
| Critical angle (optics) |
|
[math]\displaystyle{ \sin\theta_c = \frac{n_2}{n_1}\,\! }[/math] |
| Thin lens equation |
|
[math]\displaystyle{ \frac{1}{x_1} +\frac{1}{x_2} = \frac{1}{f} \,\! }[/math]
Lens focal length from refraction indices |
| Image distance in a plane mirror | [math]\displaystyle{ x_2 = -x_1\,\! }[/math] | |
| Spherical mirror |
|
Spherical mirror equation
[math]\displaystyle{ \frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{f}= \frac{2}{r}\,\! }[/math] Image distance in a spherical mirror [math]\displaystyle{ \frac{n_1}{x_1} + \frac{n_2}{x_2} = \frac{\left ( n_2 - n_1 \right )}{r}\,\! }[/math] |
Subscripts 1 and 2 refer to initial and final optical media respectively.
These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:
[math]\displaystyle{ \frac{n_1}{n_2} = \frac{v_2}{v_1} = \frac{\lambda_2}{\lambda_1} = \sqrt{\frac{\epsilon_1 \mu_1}{\epsilon_2 \mu_2}} \,\! }[/math]
where:
| Physical situation | Nomenclature | Equations |
|---|---|---|
| Angle of total polarisation |
|
[math]\displaystyle{ \tan \theta_B = n_2/n_1\,\! }[/math] |
| intensity from polarized light, Malus's law |
|
[math]\displaystyle{ I = I_0\cos^2\theta\,\! }[/math] |
| Property or effect | Nomenclature | Equation |
|---|---|---|
| Thin film in air |
|
|
| The grating equation |
|
[math]\displaystyle{ \frac{\delta}{2\pi}\lambda = a \left ( \sin\theta + \sin\alpha \right ) \,\! }[/math] |
| Rayleigh's criterion | [math]\displaystyle{ \theta_R = 1.22\lambda/\,\!d }[/math] | |
| Bragg's law (solid state diffraction) |
|
[math]\displaystyle{ \frac{\delta}{2\pi} \lambda = 2d \sin\theta \,\! }[/math]
where [math]\displaystyle{ n \in \mathbf{N}\,\! }[/math] |
| Single slit diffraction intensity |
[math]\displaystyle{ \phi = \frac{2 \pi a}{\lambda} \sin\theta \,\! }[/math] |
[math]\displaystyle{ I = I_0 \left [ \frac{ \sin \left( \phi/2 \right ) }{\left( \phi/2 \right )} \right ]^2 \,\! }[/math] |
| N-slit diffraction (N ≥ 2) |
[math]\displaystyle{ \delta = \frac{2 \pi d}{\lambda} \sin\theta \,\! }[/math] |
[math]\displaystyle{ I = I_0 \left [ \frac{ \sin \left( N \delta/2 \right ) }{\sin \left( \delta/2 \right )} \right ]^2 \,\! }[/math] |
| N-slit diffraction (all N) | [math]\displaystyle{ I = I_0 \left [ \frac{ \sin \left( \phi/2 \right ) }{\left( \phi/2 \right )} \frac{ \sin \left( N \delta/2 \right ) }{\sin \left( \delta/2 \right )} \right ]^2 \,\! }[/math] | |
| Circular aperture intensity |
|
[math]\displaystyle{ I = I_0 \left ( \frac{2 J_1(ka \sin \theta)}{ka \sin \theta} \right )^2 }[/math] |
| Amplitude for a general planar aperture | Cartesian and spherical polar coordinates are used, xy plane contains aperture
|
Near-field (Fresnel)
[math]\displaystyle{ A\left ( \mathbf{r} \right ) \propto \iint_\mathrm{aperture} E_\mathrm{inc} \left ( \mathbf{r}' \right )~ \frac{e^{ik \left | \mathbf{r} - \mathbf{r}' \right |}}{4 \pi \left | \mathbf{r} - \mathbf{r}' \right |} \mathrm{d}x'\mathrm{d}y' }[/math] Far-field (Fraunhofer) [math]\displaystyle{ A \left ( \mathbf{r} \right ) \propto \frac{e^{ik r}}{4 \pi r} \iint_\mathrm{aperture} E_\mathrm{inc}\left ( \mathbf{r}' \right ) e^{-ik \left [ \sin \theta \left ( \cos \phi x' + \sin \phi y' \right ) \right ] } \mathrm{d}x'\mathrm{d}y' }[/math] |
| Huygen-Fresnel-Kirchhoff principle |
|
[math]\displaystyle{ A \mathbf ( \mathbf{r} ) = \frac{-i}{2\lambda} \iint_\mathrm{aperture} \frac{e^{i \mathbf{k} \cdot \left ( \mathbf{r} + \mathbf{r}_0 \right ) }}{ \left | \mathbf{r} \right |\left | \mathbf{r}_0 \right |} \left [ \cos \alpha_0 - \cos \alpha \right ] \mathrm{d}S \,\! }[/math] |
| Kirchhoff's diffraction formula | [math]\displaystyle{ A \left ( \mathbf{r} \right ) = - \frac{1}{4 \pi} \iint_\mathrm{aperture} \frac{e^{i \mathbf{k} \cdot \mathbf{r}_0}}{\left | \mathbf{r}_0 \right |} \left[ i \left | \mathbf{k} \right | U_0 \left ( \mathbf{r}_0 \right ) \cos{\alpha} + \frac {\partial A_0 \left ( \mathbf{r}_0 \right )}{\partial n} \right ] \mathrm{d}S }[/math] |
In astrophysics, L is used for luminosity (energy per unit time, equivalent to power) and F is used for energy flux (energy per unit time per unit area, equivalent to intensity in terms of area, not solid angle). They are not new quantities, simply different names.
| Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
|---|---|---|---|---|
| Comoving transverse distance | DM | pc (parsecs) | [L] | |
| Luminosity distance | DL | [math]\displaystyle{ D_L = \sqrt{\frac{L}{4\pi F}} \, }[/math] | pc (parsecs) | [L] |
| Apparent magnitude in band j (UV, visible and IR parts of EM spectrum) (Bolometric) | m | [math]\displaystyle{ m_j= -\frac{5}{2} \log_{10} \left | \frac {F_j}{F_j^0} \right | \, }[/math] | dimensionless | dimensionless |
| Absolute magnitude
(Bolometric) |
M | [math]\displaystyle{ M = m - 5 \left [ \left ( \log_{10}{D_L} \right ) - 1 \right ]\!\, }[/math] | dimensionless | dimensionless |
| Distance modulus | μ | [math]\displaystyle{ \mu = m - M \!\, }[/math] | dimensionless | dimensionless |
| Colour indices | (No standard symbols) | [math]\displaystyle{ U-B = M_U - M_B\!\, }[/math] [math]\displaystyle{ B-V = M_B - M_V\!\, }[/math] |
dimensionless | dimensionless |
| Bolometric correction | Cbol (No standard symbol) | [math]\displaystyle{ \begin{align} C_\mathrm{bol} & = m_\mathrm{bol} - V \\ & = M_\mathrm{bol} - M_V \end{align} \!\, }[/math] | dimensionless | dimensionless |
Categories: [Physical quantities] [SI units] [Physical chemistry] [Equations of physics] [Optics] [Photonics]
ZWI signed: