In mathematics, a conglomerate is a collection of classes, just as a class is a collection of sets.[1] A quasi-category is like a category except that its objects and morphisms form conglomerates instead of classes.[1] The subclasses of any class, and in particular, the collection of all classes (every class is a subclass of the class of all sets), form a conglomerate.
References
- ↑ 1.0 1.1 Adamek, Jiri; Herrlich, Horst; Strecker, George (1990). Abstract and Concrete Categories: The Joy of Cats. Dover Publications. ISBN 978-0-486-46934-8. https://books.google.com/books/about/Abstract_and_Concrete_Categories.html?id=rqT4PgAACAAJ.
Category theory |
|---|
Key concepts |
|---|
| Key concepts |
- Category
- Adjoint functors
- Commutative diagram
- Concrete category
- Functor
- Morphism
- Natural transformation
- Universal property
|
|---|
| Universal constructions | | Limits |
- Terminal objects
- Products
- Equalizers
- Pullbacks
- Inverse limit
|
|---|
| Colimits |
- Initial objects
- Coproducts
- Coequalizers
- Pushout
- Direct limit
|
|---|
|
|---|
| Algebraic categories |
- Sets
- Relations
- Magmas
- Groups
- Abelian groups
- Rings (Fields)
- Modules (Vector spaces)
|
|---|
| Constructions on categories |
- Free category
- Functor category
- Quotient category
- Product category
- Subcategory
|
|---|
|
| |
Higher category theory |
|---|
| Key concepts |
Categorification
Enriched category
Higher-dimensional algebra
Homotopy hypothesis
Model category
Simplex category
|
|---|
| n-categories | | Weak n-categories |
- Bicategory (pseudofunctor)
- Tricategory
- Tetracategory
- Kan complex
- ∞-groupoid
- ∞-topos
|
|---|
| Strict n-categories |
- 2-category (2-functor)
- 3-category
|
|---|
|
|---|
| Categorified concepts |
- 2-group
- 2-ring
- En-ring
- (Symmetric) monoidal category
- n-group
- n-monoid
|
|---|
|
|
Category
Mathematics portal
Outline
Glossary
Wikibook
Wikiversity
|