Modification

From Encyclopediaofmath


of an analytic space

An analytic mapping $ f : X \rightarrow Y $ of analytic spaces such that for certain analytic sets $ S \subset X $ and $ T \subset Y $ of smaller dimensions, the conditions

$$ f : X \setminus S \rightarrow Y \setminus T \ \ \textrm{ is an isomorphism } $$

and

$$ f ( S) = T $$

hold. A modification is also called a contraction of $ S $ onto $ T $. An example of a modification is a monoidal transformation.

See also Exceptional analytic set; Exceptional subvariety.

References[edit]

[1] H. Behnke, K. Stein, "Modifikation komplexer Mannigfaltigkeiten und Riemannschen Gebiete" Math. Ann. , 124 : 1 (1951) pp. 1–16

Comments[edit]

References[edit]

[a1] R. Hartshorne, "Algebraic geometry" , Springer (1977) MR0463157 Zbl 0367.14001


Download as ZWI file | Last modified: 11/05/2025 18:17:06 | 70 views
☰ Source: https://encyclopediaofmath.org/wiki/Modification | License: CC BY-SA 3.0

ZWI is not signed. [what is this?]