| This article may be incomprehensible or very hard to understand. Please help by rewording it if the intended meaning can be determined. The talk page may have details. (October 2017) (Learn how and when to remove this template message) |
In mathematics, the actuarial polynomials a(β)n(x) are polynomials studied by (Toscano 1950) given by the generating function
- [math]\displaystyle{ \displaystyle \sum_n \frac{a_n^{(\beta)}(x)}{n!}t^n = \exp(\beta t +x(1-e^t)) }[/math]
(Roman 1984), (Boas Buck).
See also
References
- Boas, Ralph P.; Buck, R. Creighton (1958), Polynomial expansions of analytic functions, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge., 19, Berlin, New York: Springer-Verlag, ISBN 9783540031239, https://books.google.com/books?id=eihMuwkh4DsC
- Roman, Steven (1984), The umbral calculus, Pure and Applied Mathematics, 111, London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], ISBN 978-0-12-594380-2, https://books.google.com/books?id=JpHjkhFLfpgC Reprinted by Dover, 2005
- Toscano, Letterio (1950), "Una classe di polinomi della matematica attuariale" (in Italian), Rivista di Matematica della Università di Parma 1: 459–470
Further reading
- Kim, Eun Woo; Jang, Yu Seon (2016). "Some Umbral Characteristics of the Actuarial Polynomials". Journal of the Chungcheong Mathematical Society 29 (1): 73–82. doi:10.14403/jcms.2016.29.1.73. http://koreascience.or.kr/journal/view.jsp?kj=CCSHBU&py=2016&vnc=v29n1&sp=73.
 | Original source: https://en.wikipedia.org/wiki/Actuarial polynomials. Read more |