Additive Group

From Handwiki

An additive group is a group of which the group operation is to be thought of as addition in some sense. It is usually abelian, and typically written using the symbol + for its binary operation.

This terminology is widely used with structures equipped with several operations for specifying the structure obtained by forgetting the other operations. Examples include the additive group[1] of the integers, of a vector space and of a ring. This is particularly useful with rings and fields to distinguish the additive underlying group from the multiplicative group of the invertible elements.

References

  1. Bourbaki, N. (1998), "§8.1 Rings", Algebra I: Chapters 1–3, Springer, p. 97, ISBN 978-3-540-64243-5, https://books.google.com/books?id=STS9aZ6F204C&pg=PA97 




Retrieved from "https://handwiki.org/wiki/index.php?title=Additive_group&oldid=3375905"

Categories: [Algebraic structures] [Group theory]


Download as ZWI file | Last modified: 03/06/2024 20:49:06 | 16 views
☰ Source: https://handwiki.org/wiki/Additive_group | License: CC BY-SA 3.0

ZWI is not signed. [what is this?]