Encompassment Ordering

From Handwiki
Short description: Term ordering in abstract rewriting
Triangle diagram of two terms s ≤ t related by the encompassment preorder.

In theoretical computer science, in particular in automated theorem proving and term rewriting, the containment,[1] or encompassment, preorder (≤) on the set of terms, is defined by[2]

s ≤ t if a subterm of t is a substitution instance of s.

It is used e.g. in the Knuth–Bendix completion algorithm.

Properties

  • Encompassment is a preorder, i.e. reflexive and transitive, but not anti-symmetric,[note 1] nor total[note 2]
  • The corresponding equivalence relation, defined by s ~ t if s ≤ t ≤ s, is equality modulo renaming.
  • s ≤ t whenever s is a subterm of t.
  • s ≤ t whenever t is a substitution instance of s.
  • The union of any well-founded rewrite order R[note 3] with (<) is well-founded, where (<) denotes the irreflexive kernel of (≤).[3] In particular, (<) itself is well-founded.

Notes

  1. since both f(x) ≤ f(y) and f(y) ≤ f(x) for variable symbols x, y and a function symbol f
  2. since neither a ≤ b nor b ≤ a for distinct constant symbols a, b
  3. i.e. irreflexive, transitive, and well-founded binary relation R such that sRt implies u[sσ]p R u[tσ]p for all terms s, t, u, each path p of u, and each substitution σ

References

  1. Gerard Huet (1981). "A Complete Proof of Correctness of the Knuth–Bendix Completion Algorithm". J. Comput. Syst. Sci. 23 (1): 11–21. doi:10.1016/0022-0000(81)90002-7. 
  2. N. Dershowitz, J.-P. Jouannaud (1990). Jan van Leeuwen. ed. Rewrite Systems. Handbook of Theoretical Computer Science. B. Elsevier. pp. 243–320.  Here:sect.2.1, p. 250
  3. Dershowitz, Jouannaud (1990), sect.5.4, p. 278; somewhat sloppy, R is required to be a "terminating rewrite relation" there.




Retrieved from "http://192.227.78.150/wiki/index.php?title=Encompassment_ordering&oldid=209884"

Categories: [Order theory]


Download as ZWI file | Last modified: 11/06/2025 17:17:01 | 11 views
☰ Source: https://handwiki.org/wiki/Encompassment_ordering | License: CC BY-SA 3.0

ZWI is not signed. [what is this?]