From Handwiki The Kaniadakis exponential distribution (or κ-exponential distribution) is a probability distribution arising from the maximization of the Kaniadakis entropy under appropriate constraints. It is one example of a Kaniadakis distribution. The κ-exponential is a generalization of the exponential distribution in the same way that Kaniadakis entropy is a generalization of standard Boltzmann–Gibbs entropy or Shannon entropy.[1] The κ-exponential distribution of Type I is a particular case of the κ-Gamma distribution, whilst the κ-exponential distribution of Type II is a particular case of the κ-Weibull distribution.
|
Probability density function ![]() | |||
|
Cumulative distribution function ![]() | |||
| Parameters |
[math]\displaystyle{ 0 \lt \kappa \lt 1 }[/math] shape (real) [math]\displaystyle{ \beta\gt 0 }[/math] rate (real) | ||
|---|---|---|---|
| Support | [math]\displaystyle{ x \in [0, \infty) }[/math] | ||
| [math]\displaystyle{ (1 - \kappa^2) \beta \exp_\kappa(-\beta x) }[/math] | |||
| CDF | [math]\displaystyle{ 1-\Big(\sqrt{1+\kappa^2\beta^2 x^2} + \kappa^2 \beta x \Big)\exp_k({-\beta x)} }[/math] | ||
| Mean | [math]\displaystyle{ \frac{1}{\beta} \frac{1 - \kappa^2}{1 - 4\kappa^2} }[/math] | ||
| Variance | [math]\displaystyle{ \sigma_\kappa^2 =\frac{1}{\beta^2} \frac{2(1-4\kappa^2)^2 - (1 - \kappa^2)^2(1-9\kappa^2)}{(1-4\kappa^2)^2(1-9\kappa^2)} }[/math] | ||
| Skewness | [math]\displaystyle{ \frac{ 2 (1-\kappa^2) (144 \kappa^8+23 \kappa^6+27 \kappa^4-6 \kappa^2+1) }{ \beta^3 \sigma^3_\kappa (4 \kappa^2-1)^3 (144 \kappa^4-25 \kappa^2+1) } }[/math] | ||
| Kurtosis | [math]\displaystyle{ \frac{ 9(1200\kappa^{14} - 6123\kappa^{12} + 562\kappa^{10} +1539 \kappa^8 - 544 \kappa^6 + 143 \kappa^4 -18\kappa^2 + 1 )}{ \beta^4 \sigma_\kappa^4 (1-\kappa^2)^{-1}(1 - 4\kappa^2)^4 (3600\kappa^8 -4369\kappa^6 + 819\kappa^4 - 51\kappa^2 + 1) } - 3 }[/math] | ||
The Kaniadakis κ-exponential distribution of Type I is part of a class of statistical distributions emerging from the Kaniadakis κ-statistics which exhibit power-law tails. This distribution has the following probability density function:[2]
valid for [math]\displaystyle{ x \ge 0 }[/math], where [math]\displaystyle{ 0 \leq |\kappa| \lt 1 }[/math] is the entropic index associated with the Kaniadakis entropy and [math]\displaystyle{ \beta \gt 0 }[/math] is known as rate parameter. The exponential distribution is recovered as [math]\displaystyle{ \kappa \rightarrow 0. }[/math]
The cumulative distribution function of κ-exponential distribution of Type I is given by
for [math]\displaystyle{ x \ge 0 }[/math]. The cumulative exponential distribution is recovered in the classical limit [math]\displaystyle{ \kappa \rightarrow 0 }[/math].
The κ-exponential distribution of type I has moment of order [math]\displaystyle{ m \in \mathbb{N} }[/math] given by[2]
where [math]\displaystyle{ f_\kappa(x) }[/math] is finite if [math]\displaystyle{ 0 \lt m + 1 \lt 1/\kappa }[/math].
The expectation is defined as:
and the variance is:
The kurtosis of the κ-exponential distribution of type I may be computed thought:
Thus, the kurtosis of the κ-exponential distribution of type I distribution is given by:
[math]\displaystyle{ \operatorname{Kurt}[X] = \frac{ 9(1-\kappa^2)(1200\kappa^{14} - 6123\kappa^{12} + 562\kappa^{10} +1539 \kappa^8 - 544 \kappa^6 + 143 \kappa^4 -18\kappa^2 + 1 )}{ \beta^4 \sigma_\kappa^4 (1 - 4\kappa^2)^4 (3600\kappa^8 -4369\kappa^6 + 819\kappa^4 - 51\kappa^2 + 1) } \quad \text{for} \quad 0 \leq \kappa \lt 1/5 }[/math]
or
[math]\displaystyle{ \operatorname{Kurt}[X] = \frac{ 9(9\kappa^2-1)^2(\kappa^2-1)(1200\kappa^{14} - 6123\kappa^{12} + 562\kappa^{10} +1539 \kappa^8 - 544 \kappa^6 + 143 \kappa^4 -18\kappa^2 + 1 )}{ \beta^2 (1 - 4\kappa^2)^2(9\kappa^6 + 13\kappa^4 - 5\kappa^2 +1)(3600\kappa^8 -4369\kappa^6 + 819\kappa^4 - 51\kappa^2 + 1) } \quad \text{for} \quad 0 \leq \kappa \lt 1/5 }[/math]
The kurtosis of the ordinary exponential distribution is recovered in the limit [math]\displaystyle{ \kappa \rightarrow 0 }[/math].
The skewness of the κ-exponential distribution of type I may be computed thought:
Thus, the skewness of the κ-exponential distribution of type I distribution is given by:
[math]\displaystyle{ \operatorname{Shew}[X] = \frac{ 2 (1-\kappa^2) (144 \kappa^8+23 \kappa^6+27 \kappa^4-6 \kappa^2+1) }{ \beta^3 \sigma^3_\kappa (4 \kappa^2-1)^3 (144 \kappa^4-25 \kappa^2+1) } \quad \text{for} \quad 0 \leq \kappa \lt 1/4 }[/math]
The kurtosis of the ordinary exponential distribution is recovered in the limit [math]\displaystyle{ \kappa \rightarrow 0 }[/math].
|
Probability density function ![]() | |||
|
Cumulative distribution function ![]() | |||
| Parameters |
[math]\displaystyle{ 0 \leq \kappa \lt 1 }[/math] shape (real) [math]\displaystyle{ \beta\gt 0 }[/math] rate (real) | ||
|---|---|---|---|
| Support | [math]\displaystyle{ x \in [0, \infty) }[/math] | ||
| [math]\displaystyle{ \frac{ \beta }{ \sqrt{1+ \kappa^2 \beta^2 x^2 } } \exp_\kappa(- \beta x) }[/math] | |||
| CDF | [math]\displaystyle{ 1-\exp_k({-\beta x)} }[/math] | ||
| Quantile | [math]\displaystyle{ \beta^{-1} \ln_\kappa \Bigg(\frac{1}{1 - F_\kappa} \Bigg) , 0 \leq F_\kappa \leq 1 }[/math] | ||
| Mean | [math]\displaystyle{ \frac{1}{\beta} \frac{1}{1 - \kappa^2} }[/math] | ||
| Median | [math]\displaystyle{ \beta^{-1} \ln_\kappa (2) }[/math] | ||
| Mode | [math]\displaystyle{ \frac{ 1 }{ \kappa \beta \sqrt{ 2 (1 - \kappa^2) } } }[/math] | ||
| Variance | [math]\displaystyle{ \sigma_\kappa^2 = \frac{1}{\beta^2} \frac{1+2 \kappa^4}{(1-4\kappa^2)(1-\kappa^2)^2} }[/math] | ||
| Skewness | [math]\displaystyle{ \frac{ 2 (15 \kappa^6+6 \kappa^4+2 \kappa^2+1) }{ (1 - 9\kappa^2)(2 \kappa^4 + 1) } \sqrt{ \frac{1 - 4\kappa^2 }{ 1 + 2\kappa^4 } } }[/math] | ||
| Kurtosis | [math]\displaystyle{ \frac{3 (72 \kappa^{10} - 360 \kappa^8 - 44 \kappa^6-32 \kappa^4+7 \kappa^2-3) }{ (4\kappa^2-1)^{-1} (2 \kappa^4+1)^2 (144 \kappa^4-25 \kappa^2+1) } }[/math] | ||
The Kaniadakis κ-exponential distribution of Type II also is part of a class of statistical distributions emerging from the Kaniadakis κ-statistics which exhibit power-law tails, but with different constraints. This distribution is a particular case of the Kaniadakis κ-Weibull distribution with [math]\displaystyle{ \alpha = 1 }[/math] is:[2]
valid for [math]\displaystyle{ x \ge 0 }[/math], where [math]\displaystyle{ 0 \leq |\kappa| \lt 1 }[/math] is the entropic index associated with the Kaniadakis entropy and [math]\displaystyle{ \beta \gt 0 }[/math] is known as rate parameter.
The exponential distribution is recovered as [math]\displaystyle{ \kappa \rightarrow 0. }[/math]
The cumulative distribution function of κ-exponential distribution of Type II is given by
for [math]\displaystyle{ x \ge 0 }[/math]. The cumulative exponential distribution is recovered in the classical limit [math]\displaystyle{ \kappa \rightarrow 0 }[/math].
The κ-exponential distribution of type II has moment of order [math]\displaystyle{ m \lt 1/\kappa }[/math] given by[2]
The expectation value and the variance are:
The mode is given by:
The kurtosis of the κ-exponential distribution of type II may be computed thought:
Thus, the kurtosis of the κ-exponential distribution of type II distribution is given by:
or
The skewness of the κ-exponential distribution of type II may be computed thought:
Thus, the skewness of the κ-exponential distribution of type II distribution is given by:
[math]\displaystyle{ \operatorname{Skew}[X] = -\frac{ 2 (15 \kappa^6+6 \kappa^4+2 \kappa^2+1) }{ \beta^3 \sigma_\kappa^3 (\kappa^2 - 1)^3 (36 \kappa^4 - 13 \kappa^2 + 1) } \quad \text{for} \quad 0 \leq \kappa \lt 1/3 }[/math]
or
[math]\displaystyle{ \operatorname{Skew}[X] = \frac{ 2 (15 \kappa^6+6 \kappa^4+2 \kappa^2+1) }{ (1 - 9\kappa^2)(2 \kappa^4 + 1) } \sqrt{ \frac{1 - 4\kappa^2 }{ 1 + 2\kappa^4 } } \quad \text{for} \quad 0 \leq \kappa \lt 1/3 }[/math]
The skewness of the ordinary exponential distribution is recovered in the limit [math]\displaystyle{ \kappa \rightarrow 0 }[/math].
The quantiles are given by the following expression
[math]\displaystyle{ x_{\textrm{quantile}} (F_\kappa) = \beta^{-1} \ln_\kappa \Bigg(\frac{1}{1 - F_\kappa} \Bigg) }[/math]
with [math]\displaystyle{ 0 \leq F_\kappa \leq 1 }[/math], in which the median is the case :
[math]\displaystyle{ x_{\textrm{median}} (F_\kappa) = \beta^{-1} \ln_\kappa (2) }[/math]
The Lorenz curve associated with the κ-exponential distribution of type II is given by:[2]
The Gini coefficient is
[math]\displaystyle{ \operatorname{G}_\kappa = \frac{2 + \kappa^2}{4 - \kappa^2} }[/math]
The κ-exponential distribution of type II behaves asymptotically as follows:[2]
The κ-exponential distribution has been applied in several areas, such as:
![]() |
Categories: [Probability distributions] [Mathematical and quantitative methods (economics)] [Continuous distributions] [Exponentials] [Exponential family distributions]