Short description: Nuclides with atomic number of 64 but with different mass numbers
Main isotopes of Chemistry:gadolinium (64Gd)
Isotope
Decay
abundance
half-life (t1/2)
mode
product
148Gd
syn
75 y
α
144Sm
150Gd
syn
1.8×106 y
α
146Sm
152Gd
0.20%
1.08×1014 y
α
148Sm
153Gd
syn
240.4 d
ε
153Eu
γ
–
154Gd
2.18%
stable
155Gd
14.80%
stable
156Gd
20.47%
stable
157Gd
15.65%
stable
158Gd
24.84%
stable
160Gd
21.86%
stable
Standard atomic weight Ar, standard(Gd)
157.25(3)[1]
view·talk·edit
Naturally occurring gadolinium (64Gd) is composed of 6 stable isotopes, 154Gd, 155Gd, 156Gd, 157Gd, 158Gd and 160Gd, and 1 radioisotope, 152Gd, with 158Gd being the most abundant (24.84% natural abundance). The predicted double beta decay of 160Gd has never been observed; only a lower limit on its half-life of more than 1.3×1021 years has been set experimentally.[2]
Thirty-three radioisotopes have been characterized, with the most stable being alpha-decaying 152Gd (naturally occurring) with a half-life of 1.08×1014 years, and 150Gd with a half-life of 1.79×106 years. All of the remaining radioactive isotopes have half-lives less than 100 years, the majority of these having half-lives less than 24.6 seconds. Gadolinium isotopes have 10 metastable isomers, with the most stable being 143mGd (t1/2 = 110 seconds), 145mGd (t1/2 = 85 seconds) and 141mGd (t1/2 = 24.5 seconds).
The primary decay mode at atomic weights lower than the most abundant stable isotope, 158Gd, is electron capture, and the primary mode at higher atomic weights is beta decay. The primary decay products for isotopes lighter than 158Gd are isotopes of europium and the primary products of heavier isotopes are isotopes of terbium.
Contents
1List of isotopes
2Gadolinium-148
3Gadolinium-153
4References
List of isotopes
Nuclide [n 1]
Z
N
Isotopic mass (u) [n 2][n 3]
Half-life [n 4][n 5]
Decay mode [n 6]
Daughter isotope [n 7][n 8]
Spin and parity [n 9][n 5]
Physics:Natural abundance (mole fraction)
Excitation energy[n 5]
Normal proportion
Range of variation
135Gd
64
71
134.95250(43)#
1.1(2) s
β+ (98%)
135Eu
(5/2+)
β+, p (98%)
134Sm
136Gd
64
72
135.94730(32)#
1# s [>200 ns]
β+?
136Eu
0+
β+, p?
135Sm
137Gd
64
73
136.94502(32)#
2.2(2) s
β+
137Eu
(7/2)+#
β+, p?
136Sm
138Gd
64
74
137.94025(22)#
4.7(9) s
β+
138Eu
0+
138mGd
2232.6(11) keV
6.2(0.2) μs
IT
138Gd
(8−)
139Gd
64
75
138.93813(21)#
5.7(3) s
β+
139Eu
9/2−#
β+, p?
138Sm
139mGd
250(150)# keV
4.8(9) s
β+
139Eu
1/2+#
β+, p?
138Sm
140Gd
64
76
139.933674(30)
15.8(4) s
β+ (67(8)%)
140Eu
0+
EC (33(8)%)
141Gd
64
77
140.932126(21)
14(4) s
β+ (99.97%)
141Eu
(1/2+)
β+, p (0.03%)
140Sm
141mGd
377.76(9) keV
24.5(5) s
β+ (89%)
141Eu
(11/2−)
IT (11%)
141Gd
142Gd
64
78
141.928116(30)
70.2(6) s
EC (52(5)%)
142Eu
0+
β+ (48(5)%)
143Gd
64
79
142.92675(22)
39(2) s
β+
143Eu
1/2+
β+, p?
142Sm
β+, α?
139Pm
143mGd
152.6(5) keV
110.0(14) s
β+
143Eu
11/2−
β+, p?
142Sm
β+, α?
139Pm
144Gd
64
80
143.922963(30)
4.47(6) min
β+
144Eu
0+
144mGd
3433.1(5) keV
145(30) ns
IT
144Gd
(10+)
145Gd
64
81
144.921710(21)
23.0(4) min
β+
145Eu
1/2+
145mGd
749.1(2) keV
85(3) s
IT (94.3%)
145Gd
11/2−
β+ (5.7%)
145Eu
146Gd
64
82
145.9183185(44)
48.27(10) d
EC
146Eu
0+
147Gd
64
83
146.9191010(20)
38.06(12) h
β+
147Eu
7/2−
147mGd
8587.8(5) keV
510(20) ns
IT
147Gd
49/2+
148Gd
64
84
147.9181214(16)
86.9(39) y[3]
α[n 10]
144Sm
0+
149Gd
64
85
148.919341(4)
9.28(10) d
β+
149Eu
7/2−
α (4.34×10−4%)
145Sm
150Gd
64
86
149.918659(7)
1.79(8)×106 y
α[n 11]
146Sm
0+
151Gd
64
87
150.920348(4)
124(1) d
EC
151Eu
7/2−
α (1.1(6)×10−6%)
147Sm
152Gd[n 12]
64
88
151.9197910(27)
1.08(8)×1014 y
α[n 13]
148Sm
0+
0.0020(1)
153Gd
64
89
152.9217495(27)
240.4(10) d
EC
153Eu
3/2−
153m1Gd
95.1737(12) keV
3.5(4) µs
(9/2+)
153m2Gd
171.189(5) keV
76.0(14) µs
(11/2−)
154Gd
64
90
153.9208656(27)
Observationally Stable[n 14]
0+
0.0218(3)
155Gd[n 15]
64
91
154.9226220(27)
Observationally Stable[n 16]
3/2−
0.1480(12)
155mGd
121.05(19) keV
31.97(27) ms
IT
155Gd
11/2−
156Gd[n 15]
64
92
155.9221227(27)
Stable
0+
0.2047(9)
156mGd
2137.60(5) keV
1.3(1) µs
7-
157Gd[n 15]
64
93
156.9239601(27)
Stable
3/2−
0.1565(2)
158Gd[n 15]
64
94
157.9241039(27)
Stable
0+
0.2484(7)
159Gd[n 15]
64
95
158.9263887(27)
18.479(4) h
β−
159Tb
3/2−
160Gd[n 15]
64
96
159.9270541(27)
Observationally Stable[n 17]
0+
0.2186(19)
161Gd
64
97
160.9296692(29)
3.646(3) min
β−
161Tb
5/2−
162Gd
64
98
161.930985(5)
8.4(2) min
β−
162Tb
0+
163Gd
64
99
162.93399(32)#
68(3) s
β−
163Tb
7/2+#
164Gd
64
100
163.93586(43)#
45(3) s
β−
164Tb
0+
165Gd
64
101
164.93938(54)#
10.3(16) s
β−
165Tb
1/2−#
166Gd
64
102
165.94160(64)#
4.8(10) s
β−
166Tb
0+
167Gd
64
103
166.94557(64)#
4.2(3) s
β−
167Tb
5/2−#
168Gd
64
104
167.94836(75)#
3.03(16) s
β−
168Tb
0+
169Gd
64
105
168.95287(86)#
750(210) ms
β−
169Tb
7/2−#
170Gd
64
106
675+94 −75 ms[4]
β−
170Tb
0+
171Gd
64
107
392+145 −136 ms[4]
β−
171Tb
172Gd
64
108
163+113 −99 ms[4]
β−
172Tb
0+
↑mGd – Excited nuclear isomer.
↑( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
↑# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
↑Bold half-life – nearly stable, half-life longer than age of universe.
↑ 5.05.15.2# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
↑
Modes of decay:
EC:
Electron capture
IT:
Isomeric transition
↑Bold italics symbol as daughter – Daughter product is nearly stable.
↑Bold symbol as daughter – Daughter product is stable.
↑( ) spin value – Indicates spin with weak assignment arguments.
↑Theorized to also undergo β+β+ decay to 148Sm
↑Theorized to also undergo β+β+ decay to 150Sm
↑primordial radionuclide
↑Theorized to also undergo β+β+ decay to 152Sm
↑Believed to undergo α decay to 150Sm
↑ 15.015.115.215.315.415.5Fission product
↑Believed to undergo α decay to 151Sm
↑Believed to undergo β−β− decay to 160Dy with a half-life over 1.3×1021 years
Gadolinium-148
With a half-life of 86.9±3.9 year via alpha decay alone,[3] gadolinium-148 would be ideal for radioisotope thermoelectric generators. However, gadolinium-148 cannot be economically synthesized in sufficient quantities to power a RTG.[5]
Gadolinium-153
Gadolinium-153 has a half-life of 240.4±10 d and emits gamma radiation with strong peaks at 41 keV and 102 keV. It is used as a gamma ray source for X-ray absorptiometry and fluorescence, for bone density gauges for osteoporosis screening, and for radiometric profiling in the Lixiscope portable x-ray imaging system, also known as the Lixi Profiler. In nuclear medicine, it serves to calibrate the equipment needed like single-photon emission computed tomography systems (SPECT) to make x-rays. It ensures that the machines work correctly to produce images of radioisotope distribution inside the patient. This isotope is produced in a nuclear reactor from europium or enriched gadolinium.[6] It can also detect the loss of calcium in the hip and back bones, allowing the ability to diagnose osteoporosis.[7]
References
↑Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry88 (3): 265–91. doi:10.1515/pac-2015-0305.
↑F. A. Danevich (2001). "Quest for double beta decay of 160Gd and Ce isotopes". Nuclear Physics A694 (1–2): 375–391. doi:10.1016/S0375-9474(01)00983-6. Bibcode: 2001NuPhA.694..375D.
↑ 3.03.1Cite error: Invalid <ref> tag; no text was provided for refs named 148Gd
↑ 4.04.14.2Kiss, G. G.Expression error: Unrecognized word "et". (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region". The Astrophysical Journal936 (107): 107. doi:10.3847/1538-4357/ac80fc. Bibcode: 2022ApJ...936..107K.
↑Council, National Research; Sciences, Division on Engineering Physical; Board, Aeronautics Space Engineering; Board, Space Studies; Committee, Radioisotope Power Systems (2009). Radioisotope Power Systems: An Imperative for Maintaining U.S. Leadership in Space Exploration. doi:10.17226/12653. ISBN 978-0-309-13857-4.
↑"PNNL: Isotope Sciences Program – Gadolinium-153". pnl.gov. http://radioisotopes.pnl.gov/gadolinium.stm.
↑"Gadolinium". BCIT Chemistry Resource Center. British Columbia Institute of Technology. http://nobel.scas.bcit.ca/resource/ptable/gd.htm.
Isotope masses from:
Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A729: 3–128, doi:10.1016/j.nuclphysa.2003.11.001, Bibcode: 2003NuPhA.729....3A, https://hal.archives-ouvertes.fr/in2p3-00020241/document
Isotopic compositions and standard atomic masses from:
Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry78 (11): 2051–2066. doi:10.1351/pac200678112051.
Half-life, spin, and isomer data selected from the following sources.
Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A729: 3–128, doi:10.1016/j.nuclphysa.2003.11.001, Bibcode: 2003NuPhA.729....3A, https://hal.archives-ouvertes.fr/in2p3-00020241/document
National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory. http://www.nndc.bnl.gov/nudat2/.
Lide, David R., ed (2004). "11. Table of the Isotopes". CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.
v
t
e
Isotopes of the chemical elements
Group
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Period
Alkali metals
Alkaline earth metals
Pnictogens
Chalcogens
Halogens
Noble gases
1
Iso's · List
H
1
Iso's · List
He
2
2
Iso's · List
Li
3
Iso's · List
Be
4
Iso's · List
B
5
Iso's · List
C
6
Iso's · List
N
7
Iso's · List
O
8
Iso's · List
F
9
Iso's · List
Ne
10
3
Iso's · List
Na
11
Iso's · List
Mg
12
Iso's · List
Al
13
Iso's · List
Si
14
Iso's · List
P
15
Iso's · List
S
16
Iso's · List
Cl
17
Iso's · List
Ar
18
4
Iso's · List
K
19
Iso's · List
Ca
20
Iso's · List
Sc
21
Iso's · List
Ti
22
Iso's · List
V
23
Iso's · List
Cr
24
Iso's · List
Mn
25
Iso's · List
Fe
26
Iso's · List
Co
27
Iso's · List
Ni
28
Iso's · List
Cu
29
Iso's · List
Zn
30
Iso's · List
Ga
31
Iso's · List
Ge
32
Iso's · List
As
33
Iso's · List
Se
34
Iso's · List
Br
35
Iso's · List
Kr
36
5
Iso's · List
Rb
37
Iso's · List
Sr
38
Iso's · List
Y
39
Iso's · List
Zr
40
Iso's · List
Nb
41
Iso's · List
Mo
42
Iso's · List
Tc
43
Iso's · List
Ru
44
Iso's · List
Rh
45
Iso's · List
Pd
46
Iso's · List
Ag
47
Iso's · List
Cd
48
Iso's · List
In
49
Iso's · List
Sn
50
Iso's · List
Sb
51
Iso's · List
Te
52
Iso's · List
I
53
Iso's · List
Xe
54
6
Iso's · List
Cs
55
Iso's · List
Ba
56
Iso's · List
La
57
Iso's · List
Hf
72
Iso's · List
Ta
73
Iso's · List
W
74
Iso's · List
Re
75
Iso's · List
Os
76
Iso's · List
Ir
77
Iso's · List
Pt
78
Iso's · List
Au
79
Iso's · List
Hg
80
Iso's · List
Tl
81
Iso's · List
Pb
82
Iso's · List
Bi
83
Iso's · List
Po
84
Iso's · List
At
85
Iso's · List
Rn
86
7
Iso's · List
Fr
87
Iso's · List
Ra
88
Iso's · List
Ac
89
Iso's · List
Rf
104
Iso's · List
Db
105
Iso's · List
Sg
106
Iso's · List
Bh
107
Iso's · List
Hs
108
Iso's · List
Mt
109
Iso's · List
Ds
110
Iso's · List
Rg
111
Iso's · List
Cn
112
Iso's · List
Nh
113
Iso's · List
Fl
114
Iso's · List
Mc
115
Iso's · List
Lv
116
Iso's · List
Ts
117
Iso's · List
Og
118
Iso's · List
Ce
58
Iso's · List
Pr
59
Iso's · List
Nd
60
Iso's · List
Pm
61
Iso's · List
Sm
62
Iso's · List
Eu
63
Iso's · List
Gd
64
Iso's · List
Tb
65
Iso's · List
Dy
66
Iso's · List
Ho
67
Iso's · List
Er
68
Iso's · List
Tm
69
Iso's · List
Yb
70
Iso's · List
Lu
71
Iso's · List
Th
90
Iso's · List
Pa
91
Iso's · List
U
92
Iso's · List
Np
93
Iso's · List
Pu
94
Iso's · List
Am
95
Iso's · List
Cm
96
Iso's · List
Bk
97
Iso's · List
Cf
98
Iso's · List
Es
99
Iso's · List
Fm
100
Iso's · List
Md
101
Iso's · List
No
102
Iso's · List
Lr
103
Table of nuclides
Categories: Isotopes
Tables of nuclides
Metastable isotopes
Isotopes by element
0.00
(0 votes)
Original source: https://en.wikipedia.org/wiki/Isotopes of gadolinium. Read more