Classical Lie Algebras

From Handwiki

The classical Lie algebras are finite-dimensional Lie algebras over a field which can be classified into four types An, Bn, Cn and Dn, where for 𝔤𝔩(n) the general linear Lie algebra and In the n×n identity matrix:

  • An:=𝔰𝔩(n+1)={x𝔤𝔩(n+1):tr(x)=0}, the special linear Lie algebra;
  • Bn:=𝔰𝔬(2n+1)={x𝔤𝔩(2n+1):x+xT=0}, the odd-dimensional orthogonal Lie algebra;
  • Cn:=𝔰𝔭(2n)={x𝔤𝔩(2n):Jnx+xTJn=0,Jn=(0InIn0)}, the symplectic Lie algebra; and
  • Dn:=𝔰𝔬(2n)={x𝔤𝔩(2n):x+xT=0}, the even-dimensional orthogonal Lie algebra.

Except for the low-dimensional cases D1=𝔰𝔬(2) and D2=𝔰𝔬(4), the classical Lie algebras are simple.[1][2]

The Moyal algebra is an infinite-dimensional Lie algebra that contains all classical Lie algebras as subalgebras.

See also

  • Simple Lie algebra
  • Classical group

References

  1. Antonino, Sciarrino; Paul, Sorba (2000-01-01). Dictionary on Lie algebras and superalgebras. Academic Press. ISBN 9780122653407. OCLC 468609320. https://www.worldcat.org/oclc/468609320. 
  2. Sthanumoorthy, Neelacanta (18 April 2016). Introduction to finite and infinite dimensional lie (super)algebras. Amsterdam Elsevie. ISBN 9780128046753. OCLC 952065417. https://www.worldcat.org/oclc/952065417. 



Retrieved from "http://192.227.78.150/wiki/index.php?title=Classical_Lie_algebras&oldid=39890"

Categories: [Algebra] [Lie algebras]


Download as ZWI file | Last modified: 11/06/2025 11:47:00 | 18 views
☰ Source: https://handwiki.org/wiki/Classical_Lie_algebras | License: CC BY-SA 3.0

ZWI is not signed. [what is this?]