Dickson Group

From Encyclopediaofmath

The group of exponential automorphisms of a classical simple Lie algebra of type $G_2$ over a finite field $F$. If the order of $F$ is $q$, the order of the Dickson group is $q^6(q^2-1)(q^6-1)$. If $q>2$ the Dickson group is a simple group. These groups were discovered by L.E. Dickson [1]. During the 50 years which followed no new finite simple group could be discovered, until a general method for obtaining simple groups as groups of automorphisms of simple Lie algebras was discovered by C. Chevalley [2] (cf. Chevalley group). In particular, Chevalley's method makes it possible to obtain Dickson groups as well [3].

References[edit]

[1] L.E. Dickson, "A new system of simple groups" Math. Ann. , 60 (1905) pp. 137–150
[2] C. Chevalley, "Sur certains groupes simples" Tôhoku Math. J. , 7 (1955) pp. 14–66
[3] R.W. Carter, "Simple groups of Lie type" , Wiley (Interscience) (1972)

Categories: [Group theory and generalizations]


Download as ZWI file | Last modified: 10/06/2024 01:52:47 | 6 views
☰ Source: https://encyclopediaofmath.org/wiki/Dickson_group | License: CC BY-SA 3.0

ZWI is not signed. [what is this?]