Neodymium nickelate
| Names
|
| Other names
Neodymium(III) nickelate
|
| Identifiers
|
CAS Number
|
- 11132-41-5
Y
|
3D model (JSmol)
|
|
InChI
InChI=1S/Nd.Ni.3O/q2*+3;3*-2 Key: QDQFJKLUAHCIBS-UHFFFAOYSA-N
|
SMILES
[Nd+3].[Ni+3].[O-2].[O-2].[O-2]
|
| Properties
|
Chemical formula
|
NdNiO3
|
| Molar mass
|
250.932 g·mol−1
|
| Hazards
|
| GHS pictograms
|

|
| GHS Signal word
|
Danger
|
GHS hazard statements
|
H317, H350, H372
|
GHS precautionary statements
|
P261, P280, P263, P405, P501
|
| Related compounds
|
Other anions
|
Neodymium(III) oxide Neodymium(III) acetate Neodymium(III) hydride
|
Other cations
|
europium nickelate lanthanum nickelate
|
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
| Infobox references
|
|
|
|
Neodymium nickelate is a nickelate of neodymium with a chemical formula NdNiO3. In this compound, the neodymium atom is in the +3 oxidation state.
Preparation
Neodymium nickelate can be prepared by dissolving neodymium(III) oxide and nickel(II) oxide in nitric acid, followed by heating the mixture in an oxygen atmosphere.[2]
It can also be prepared by pyrolyzing a mixture of nickel nitrate and neodymium nitrate.[2][3]
It decomposes in high temperature (950 °C) by nitrogen:[2]
- 4 NdNiO3 → 2 Nd2NiO4 + 2 NiO + O2
It can also be reduced to the monovalent nickel compound NdNiO2 by sodium hydride at 160°C.[4]
Physical properties
Neodymium nickelate shows metal-insulator transition (MIT) under low temperature.[5][6] The temperature at which it transforms (TMIT) is 400K,[7] which is higher than praseodymium nickelate (200K) but lower than samarium nickelate (460K).[5][7][8] It transforms from antiferromagnetism to paramagnetism. It has demonstrated to be a first-order phase transition (this applies for praseodymium nickelate as well).[5] The temperature (TN) can be changed by varying the NiO6 octahedral distortion.[5][6] It is the only lathanide nickelate to have the same TMIT as TN.[5]
Uses
In a 2010 study, it was found that neodymium nickelate as an anode material provided 1.7 times the current density of typical LSM anodes when integrated into a commercial SOEC and operated at 700 °C, and approximately 4 times the current density when operated at 800 °C. The increased performance is postulated to be due to higher "overstoichiometry" of oxygen in the neodymium nickelate, making it a successful conductor of both ions and electrons.[9]
Neodymium nickelate can also be used in electrocatalysts, synapse transistors, photovoltaics, memory resistors, biosensors, and electric-field sensors.[5]
See also
- Oxonickelates
- Neodymium
- Nickel
- Lanthanide
References
- ↑ "Safety Data Sheet Neodymium Nickel Oxide". LTS Research Laboratories, Inc.. 13 July 2015. https://www.ltschem.com/msds/NdNiO3.pdf.
- ↑ 2.0 2.1 2.2 Vassiliou, John K.; Hornbostel, Marc; Ziebarth, Robin; Disalvo, F.J. (1989). "Synthesis and properties of NdNiO3 prepared by low-temperature methods". Journal of Solid State Chemistry (Elsevier BV) 81 (2): 208–216. doi:10.1016/0022-4596(89)90008-x. ISSN 0022-4596. Bibcode: 1989JSSCh..81..208V.
- ↑ M.T. Escote, A.M.L. da Silva, J.R. Matos, R.F. Jardim (May 2000). "General Properties of Polycrystalline LnNiO3 (Ln=Pr, Nd, Sm) Compounds Prepared through Different Precursors" (in en). Journal of Solid State Chemistry 151 (2): 298–307. doi:10.1006/jssc.2000.8657. Bibcode: 2000JSSCh.151..298E. https://linkinghub.elsevier.com/retrieve/pii/S0022459600986572. Retrieved 2022-03-18.
- ↑ M.A. Hayward, M.J. Rosseinsky (June 2003). "Synthesis of the infinite layer Ni(I) phase NdNiO2+x by low temperature reduction of NdNiO3 with sodium hydride" (in en). Solid State Sciences 5 (6): 839–850. doi:10.1016/S1293-2558(03)00111-0. Bibcode: 2003SSSci...5..839H. https://linkinghub.elsevier.com/retrieve/pii/S1293255803001110. Retrieved 2022-03-18.
- ↑ 5.0 5.1 5.2 5.3 5.4 5.5 Hongwei Yang, Zhiwei Wen, Jun Shu, Yajing Cui, Yongliang Chen, Yong Zhao, Structural, electrical, and magnetic properties of bulk Nd1-xSrxNiO3 (x = 0–0.3), Solid State Communications, Volume 336, 2021, 114420, ISSN 0038-1098, https://doi.org/10.1016/j.ssc.2021.114420.
- ↑ 6.0 6.1 Subir Roy, Rajesh Katoch, R.B. Gangineni, S. Angappane, Investigation of metal-insulator transition temperature and magnetic properties of NdNiO3 nanoparticles, Journal of Solid State Chemistry, Volume 294, 2021, 121865, ISSN 0022-4596, https://doi.org/10.1016/j.jssc.2020.121865.
- ↑ 7.0 7.1 Lafez, P.; Ruello, P.; Edely, M. (2008). "Electrical and Infrared Properties of RF Sputtering of Rare Earth Nickelate (RNiO3) Thin Films with Metal Insulator-Transitions". in Lamont, Paul W. (in en). Leading-Edge Materials Science Research. Nova Publishers. pp. 277–310. ISBN 9781600217982. https://books.google.com/books?id=3-3FL5ii01YC&pg=PA277. Retrieved 21 April 2016.
- ↑ Jorgensen, Finn. The Complete Handbook of Magnetic Recording; McGraw-Hill, 1996.
- ↑ Chauveau, F., Mougin, J., Bassat, J. M., Mauvy, F., & Grenier, J. C. (2010). A new anode material for solid oxide electrolyser: The neodymium nickelate. Journal of Power Sources, 195, 744–749. doi:10.1016/j.jpowsour.2009.08.003
Neodymium compounds |
|---|
- NdAl3(BO3)4
- NdBr3
- NdCl3
- NdF3
- Nd(OH)3
- NdNiO3
- NdN
- Nd(NO3)3
- Nd2O3
- Nd2(SO4)3
|
Nickel compounds |
|---|
| Nickel(0) | |
|---|
| Nickel(II) |
- NiBr2
- NiCO3
- NiCl2
- NiCrO4
- NiF2
- NiI2
- Ni(NO2)2
- Ni(NO3)2
- NiO
- Ni(OH)2
- Ni3(PO4)2
- NiS
- NiSO4
- NiTiO3
- Ni(acac)2
- xNi(NO2)6
- xNiF4
- xNiCl4
- xNiBr4
- xNiI4
|
|---|
| Nickel(III) | |
|---|
| Nickel(IV) | |
|---|
 | Original source: https://en.wikipedia.org/wiki/Neodymium nickelate. Read more |