Partial Group Algebra

From Handwiki

In mathematics, a partial group algebra is an associative algebra related to the partial representations of a group.

Examples

  • The partial group algebra [math]\displaystyle{ \mathbb{C}_{\text{par}}\left(\mathbb{Z}_4\right) }[/math] is isomorphic to the direct sum:[1]
    [math]\displaystyle{ \mathbb{C}\oplus \mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus\mathbb{C}\oplus M_2\left(\mathbb{C}\right) \oplus M_3\left(\mathbb{C}\right) }[/math]

See also

  • Group ring
  • Group representation

Notes

  1. R. Exel (1998)

References

  • Exel, Ruy (1998). "Partial Actions of Groups and Actions of Inverse Semigroups". Proceedings of the American Mathematical Society 126 (12): 3481-3494. doi:10.1090/S0002-9939-98-04575-4. 




Retrieved from "https://handwiki.org/wiki/index.php?title=Partial_group_algebra&oldid=3362682"

Categories: [Algebras] [Representation theory of groups]


Download as ZWI file | Last modified: 07/15/2024 04:30:29 | 22 views
☰ Source: https://handwiki.org/wiki/Partial_group_algebra | License: CC BY-SA 3.0

ZWI is not signed. [what is this?]